Do you want to publish a course? Click here

BiGCN: A Bi-directional Low-Pass Filtering Graph Neural Network

57   0   0.0 ( 0 )
 Added by Zhixian Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Graph convolutional networks have achieved great success on graph-structured data. Many graph convolutional networks can be regarded as low-pass filters for graph signals. In this paper, we propose a new model, BiGCN, which represents a graph neural network as a bi-directional low-pass filter. Specifically, we not only consider the original graph structure information but also the latent correlation between features, thus BiGCN can filter the signals along with both the original graph and a latent feature-connection graph. Our model outperforms previous graph neural networks in the tasks of node classification and link prediction on most of the benchmark datasets, especially when we add noise to the node features.



rate research

Read More

Graph convolutional networks are becoming indispensable for deep learning from graph-structured data. Most of the existing graph convolutional networks share two big shortcomings. First, they are essentially low-pass filters, thus the potentially useful middle and high frequency band of graph signals are ignored. Second, the bandwidth of existing graph convolutional filters is fixed. Parameters of a graph convolutional filter only transform the graph inputs without changing the curvature of a graph convolutional filter function. In reality, we are uncertain about whether we should retain or cut off the frequency at a certain point unless we have expert domain knowledge. In this paper, we propose Automatic Graph Convolutional Networks (AutoGCN) to capture the full spectrum of graph signals and automatically update the bandwidth of graph convolutional filters. While it is based on graph spectral theory, our AutoGCN is also localized in space and has a spatial form. Experimental results show that AutoGCN achieves significant improvement over baseline methods which only work as low-pass filters.
163 - Bingbing Xu , Huawei Shen , Qi Cao 2019
We present graph wavelet neural network (GWNN), a novel graph convolutional neural network (CNN), leveraging graph wavelet transform to address the shortcomings of previous spectral graph CNN methods that depend on graph Fourier transform. Different from graph Fourier transform, graph wavelet transform can be obtained via a fast algorithm without requiring matrix eigendecomposition with high computational cost. Moreover, graph wavelets are sparse and localized in vertex domain, offering high efficiency and good interpretability for graph convolution. The proposed GWNN significantly outperforms previous spectral graph CNNs in the task of graph-based semi-supervised classification on three benchmark datasets: Cora, Citeseer and Pubmed.
91 - Zhen Zhang , Fan Wu , Wee Sun Lee 2019
Most of the successful deep neural network architectures are structured, often consisting of elements like convolutional neural networks and gated recurrent neural networks. Recently, graph neural networks have been successfully applied to graph structured data such as point cloud and molecular data. These networks often only consider pairwise dependencies, as they operate on a graph structure. We generalize the graph neural network into a factor graph neural network (FGNN) in order to capture higher order dependencies. We show that FGNN is able to represent Max-Product Belief Propagation, an approximate inference algorithm on probabilistic graphical models; hence it is able to do well when Max-Product does well. Promising results on both synthetic and real datasets demonstrate the effectiveness of the proposed model.
Recently, there have been some breakthroughs in graph analysis by applying the graph neural networks (GNNs) following a neighborhood aggregation scheme, which demonstrate outstanding performance in many tasks. However, we observe that the parameters of the network and the embedding of nodes are represented in real-valued matrices in existing GNN-based graph embedding approaches which may limit the efficiency and scalability of these models. It is well-known that binary vector is usually much more space and time efficient than the real-valued vector. This motivates us to develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters following the GNN-based paradigm. Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches to binarize the model parameters and learn the compact embedding. Extensive experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space while matching the state-of-the-art performance.
306 - Hoang NT , Takanori Maehara 2019
Graph neural networks have become one of the most important techniques to solve machine learning problems on graph-structured data. Recent work on vertex classification proposed deep and distributed learning models to achieve high performance and scalability. However, we find that the feature vectors of benchmark datasets are already quite informative for the classification task, and the graph structure only provides a means to denoise the data. In this paper, we develop a theoretical framework based on graph signal processing for analyzing graph neural networks. Our results indicate that graph neural networks only perform low-pass filtering on feature vectors and do not have the non-linear manifold learning property. We further investigate their resilience to feature noise and propose some insights on GCN-based graph neural network design.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا