Do you want to publish a course? Click here

Differentiable Hierarchical Graph Grouping for Multi-Person Pose Estimation

67   0   0.0 ( 0 )
 Added by Sheng Jin
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Multi-person pose estimation is challenging because it localizes body keypoints for multiple persons simultaneously. Previous methods can be divided into two streams, i.e. top-down and bottom-up methods. The top-down methods localize keypoints after human detection, while the bottom-up methods localize keypoints directly and then cluster/group them for different persons, which are generally more efficient than top-down methods. However, in existing bottom-up methods, the keypoint grouping is usually solved independently from keypoint detection, making them not end-to-end trainable and have sub-optimal performance. In this paper, we investigate a new perspective of human part grouping and reformulate it as a graph clustering task. Especially, we propose a novel differentiable Hierarchical Graph Grouping (HGG) method to learn the graph grouping in bottom-up multi-person pose estimation task. Moreover, HGG is easily embedded into main-stream bottom-up methods. It takes human keypoint candidates as graph nodes and clusters keypoints in a multi-layer graph neural network model. The modules of HGG can be trained end-to-end with the keypoint detection network and is able to supervise the grouping process in a hierarchical manner. To improve the discrimination of the clustering, we add a set of edge discriminators and macro-node discriminators. Extensive experiments on both COCO and OCHuman datasets demonstrate that the proposed method improves the performance of bottom-up pose estimation methods.



rate research

Read More

53 - Jiahao Lin , Gim Hee Lee 2021
Bottom-up approaches for image-based multi-person pose estimation consist of two stages: (1) keypoint detection and (2) grouping of the detected keypoints to form person instances. Current grouping approaches rely on learned embedding from only visual features that completely ignore the spatial configuration of human poses. In this work, we formulate the grouping task as a graph partitioning problem, where we learn the affinity matrix with a Graph Neural Network (GNN). More specifically, we design a Geometry-aware Association GNN that utilizes spatial information of the keypoints and learns local affinity from the global context. The learned geometry-based affinity is further fused with appearance-based affinity to achieve robust keypoint association. Spectral clustering is used to partition the graph for the formation of the pose instances. Experimental results on two benchmark datasets show that our proposed method outperforms existing appearance-only grouping frameworks, which shows the effectiveness of utilizing spatial context for robust grouping. Source code is available at: https://github.com/jiahaoLjh/PoseGrouping.
100 - Size Wu , Sheng Jin , Wentao Liu 2021
This paper studies the task of estimating the 3D human poses of multiple persons from multiple calibrated camera views. Following the top-down paradigm, we decompose the task into two stages, i.e. person localization and pose estimation. Both stages are processed in coarse-to-fine manners. And we propose three task-specific graph neural networks for effective message passing. For 3D person localization, we first use Multi-view Matching Graph Module (MMG) to learn the cross-view association and recover coarse human proposals. The Center Refinement Graph Module (CRG) further refines the results via flexible point-based prediction. For 3D pose estimation, the Pose Regression Graph Module (PRG) learns both the multi-view geometry and structural relations between human joints. Our approach achieves state-of-the-art performance on CMU Panoptic and Shelf datasets with significantly lower computation complexity.
Multi-person pose estimation in the wild is challenging. Although state-of-the-art human detectors have demonstrated good performance, small errors in localization and recognition are inevitable. These errors can cause failures for a single-person pose estimator (SPPE), especially for methods that solely depend on human detection results. In this paper, we propose a novel regional multi-person pose estimation (RMPE) framework to facilitate pose estimation in the presence of inaccurate human bounding boxes. Our framework consists of three components: Symmetric Spatial Transformer Network (SSTN), Parametric Pose Non-Maximum-Suppression (NMS), and Pose-Guided Proposals Generator (PGPG). Our method is able to handle inaccurate bounding boxes and redundant detections, allowing it to achieve a 17% increase in mAP over the state-of-the-art methods on the MPII (multi person) dataset.Our model and source codes are publicly available.
The topic of multi-person pose estimation has been largely improved recently, especially with the development of convolutional neural network. However, there still exist a lot of challenging cases, such as occluded keypoints, invisible keypoints and complex background, which cannot be well addressed. In this paper, we present a novel network structure called Cascaded Pyramid Network (CPN) which targets to relieve the problem from these hard keypoints. More specifically, our algorithm includes two stages: GlobalNet and RefineNet. GlobalNet is a feature pyramid network which can successfully localize the simple keypoints like eyes and hands but may fail to precisely recognize the occluded or invisible keypoints. Our RefineNet tries explicitly handling the hard keypoints by integrating all levels of feature representations from the GlobalNet together with an online hard keypoint mining loss. In general, to address the multi-person pose estimation problem, a top-down pipeline is adopted to first generate a set of human bounding boxes based on a detector, followed by our CPN for keypoint localization in each human bounding box. Based on the proposed algorithm, we achieve state-of-art results on the COCO keypoint benchmark, with average precision at 73.0 on the COCO test-dev dataset and 72.1 on the COCO test-challenge dataset, which is a 19% relative improvement compared with 60.5 from the COCO 2016 keypoint challenge.Code (https://github.com/chenyilun95/tf-cpn.git) and the detection results are publicly available for further research.
Current methods of multi-person pose estimation typically treat the localization and the association of body joints separately. It is convenient but inefficient, leading to additional computation and a waste of time. This paper, however, presents a novel framework PoseDet (Estimating Pose by Detection) to localize and associate body joints simultaneously at higher inference speed. Moreover, we propose the keypoint-aware pose embedding to represent an object in terms of the locations of its keypoints. The proposed pose embedding contains semantic and geometric information, allowing us to access discriminative and informative features efficiently. It is utilized for candidate classification and body joint localization in PoseDet, leading to robust predictions of various poses. This simple framework achieves an unprecedented speed and a competitive accuracy on the COCO benchmark compared with state-of-the-art methods. Extensive experiments on the CrowdPose benchmark show the robustness in the crowd scenes. Source code is available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا