No Arabic abstract
State-of-the-art recommender systems have the ability to generate high-quality recommendations, but usually cannot provide intuitive explanations to humans due to the usage of black-box prediction models. The lack of transparency has highlighted the critical importance of improving the explainability of recommender systems. In this paper, we propose to extract causal rules from the user interaction history as post-hoc explanations for the black-box sequential recommendation mechanisms, whilst maintain the predictive accuracy of the recommendation model. Our approach firstly achieves counterfactual examples with the aid of a perturbation model, and then extracts personalized causal relationships for the recommendation model through a causal rule mining algorithm. Experiments are conducted on several state-of-the-art sequential recommendation models and real-world datasets to verify the performance of our model on generating causal explanations. Meanwhile, We evaluate the discovered causal explanations in terms of quality and fidelity, which show that compared with conventional association rules, causal rules can provide personalized and more effective explanations for the behavior of black-box recommendation models.
Providing personalized explanations for recommendations can help users to understand the underlying insight of the recommendation results, which is helpful to the effectiveness, transparency, persuasiveness and trustworthiness of recommender systems. Current explainable recommendation models mostly generate textual explanations based on pre-defined sentence templates. However, the expressiveness power of template-based explanation sentences are limited to the pre-defined expressions, and manually defining the expressions require significant human efforts. Motivated by this problem, we propose to generate free-text natural language explanations for personalized recommendation. In particular, we propose a hierarchical sequence-to-sequence model (HSS) for personalized explanation generation. Different from conventional sentence generation in NLP research, a great challenge of explanation generation in e-commerce recommendation is that not all sentences in user reviews are of explanation purpose. To solve the problem, we further propose an auto-denoising mechanism based on topical item feature words for sentence generation. Experiments on various e-commerce product domains show that our approach can not only improve the recommendation accuracy, but also the explanation quality in terms of the offline measures and feature words coverage. This research is one of the initial steps to grant intelligent agents with the ability to explain itself based on natural language sentences.
Explainability and effectiveness are two key aspects for building recommender systems. Prior efforts mostly focus on incorporating side information to achieve better recommendation performance. However, these methods have some weaknesses: (1) prediction of neural network-based embedding methods are hard to explain and debug; (2) symbolic, graph-based approaches (e.g., meta path-based models) require manual efforts and domain knowledge to define patterns and rules, and ignore the item association types (e.g. substitutable and complementary). In this paper, we propose a novel joint learning framework to integrate textit{induction of explainable rules from knowledge graph} with textit{construction of a rule-guided neural recommendation model}. The framework encourages two modules to complement each other in generating effective and explainable recommendation: 1) inductive rules, mined from item-centric knowledge graphs, summarize common multi-hop relational patterns for inferring different item associations and provide human-readable explanation for model prediction; 2) recommendation module can be augmented by induced rules and thus have better generalization ability dealing with the cold-start issue. Extensive experimentsfootnote{Code and data can be found at: url{https://github.com/THUIR/RuleRec}} show that our proposed method has achieved significant improvements in item recommendation over baselines on real-world datasets. Our model demonstrates robust performance over noisy item knowledge graphs, generated by linking item names to related entities.
Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single learners. Considering that i) ensemble learners usually show better performance and ii) different kinds of meta-features characterize the classification problems in different viewpoints independently, and further the models constructed with different sets of meta-features will be complementary with each other and applicable for ensemble. This paper proposes an ensemble learning-based algorithm recommendation method. To evaluate the proposed recommendation method, extensive experiments with 13 well-known candidate classification algorithms and five different kinds of meta-features are conducted on 1090 benchmark classification problems. The results show the effectiveness of the proposed ensemble learning based recommendation method.
Mobile devices enable users to retrieve information at any time and any place. Considering the occasional requirements and fragmentation usage pattern of mobile users, temporal recommendation techniques are proposed to improve the efficiency of information retrieval on mobile devices by means of accurately recommending items via learning temporal interests with short-term user interaction behaviors. However, the enforcement of privacy-preserving laws and regulations, such as GDPR, may overshadow the successful practice of temporal recommendation. The reason is that state-of-the-art recommendation systems require to gather and process the user data in centralized servers but the interaction behaviors data used for temporal recommendation are usually non-transactional data that are not allowed to gather without the explicit permission of users according to GDPR. As a result, if users do not permit services to gather their interaction behaviors data, the temporal recommendation fails to work. To realize the temporal recommendation in the post-GDPR era, this paper proposes $C^3DRec$, a cloud-client cooperative deep learning framework of mining interaction behaviors for recommendation while preserving user privacy. $C^3DRec$ constructs a global recommendation model on centralized servers using data collected before GDPR and fine-tunes the model directly on individual local devices using data collected after GDPR. We design two modes to accomplish the recommendation, i.e. pull mode where candidate items are pulled down onto the devices and fed into the local model to get recommended items, and push mode where the output of the local model is pushed onto the server and combined with candidate items to get recommended ones. Evaluation results show that $C^3DRec$ achieves comparable recommendation accuracy to the centralized approaches, with minimal privacy concern.
System-provided explanations for recommendations are an important component towards transparent and trustworthy AI. In state-of-the-art research, this is a one-way signal, though, to improve user acceptance. In this paper, we turn the role of explanations around and investigate how they can contribute to enhancing the quality of the generated recommendations themselves. We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors, overcoming sparseness by label propagation with item-similarity-based neighborhoods. Our framework is instantiated using generalized graph recommendation via Random Walk with Restart. Insightful experiments with a real user study show significant improvements in movie and book recommendations over item-level feedback.