Do you want to publish a course? Click here

Audio-Oriented Multimodal Machine Comprehension: Task, Dataset and Model

112   0   0.0 ( 0 )
 Added by Shen Ge
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While Machine Comprehension (MC) has attracted extensive research interests in recent years, existing approaches mainly belong to the category of Machine Reading Comprehension task which mines textual inputs (paragraphs and questions) to predict the answers (choices or text spans). However, there are a lot of MC tasks that accept audio input in addition to the textual input, e.g. English listening comprehension test. In this paper, we target the problem of Audio-Oriented Multimodal Machine Comprehension, and its goal is to answer questions based on the given audio and textual information. To solve this problem, we propose a Dynamic Inter- and Intra-modality Attention (DIIA) model to effectively fuse the two modalities (audio and textual). DIIA can work as an independent component and thus be easily integrated into existing MC models. Moreover, we further develop a Multimodal Knowledge Distillation (MKD) module to enable our multimodal MC model to accurately predict the answers based only on either the text or the audio. As a result, the proposed approach can handle various tasks including: Audio-Oriented Multimodal Machine Comprehension, Machine Reading Comprehension and Machine Listening Comprehension, in a single model, making fair comparisons possible between our model and the existing unimodal MC models. Experimental results and analysis prove the effectiveness of the proposed approaches. First, the proposed DIIA boosts the baseline models by up to 21.08% in terms of accuracy; Second, under the unimodal scenarios, the MKD module allows our multimodal MC model to significantly outperform the unimodal models by up to 18.87%, which are trained and tested with only audio or textual data.



rate research

Read More

We present a new corpus for the Situated and Interactive Multimodal Conversations, SIMMC 2.0, aimed at building a successful multimodal assistant agent. Specifically, the dataset features 11K task-oriented dialogs (117K utterances) between a user and a virtual assistant on the shopping domain (fashion and furniture), grounded in situated and photo-realistic VR scenes. The dialogs are collected using a two-phase pipeline, which first generates simulated dialog flows via a novel multimodal dialog simulator we propose, followed by manual paraphrasing of the generated utterances. In this paper, we provide an in-depth analysis of the collected dataset, and describe in detail the four main benchmark tasks we propose for SIMMC 2.0. The preliminary analysis with a baseline model highlights the new challenges that the SIMMC 2.0 dataset brings, suggesting new directions for future research. Our dataset and code will be made publicly available.
Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC.
159 - Rujun Han , I-Hung Hsu , Jiao Sun 2021
Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce ESTER, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3%, and 83.5% for token-based exact-match, F1, and event-based HIT@1 scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset
One of the challenges in a task oriented natural language application like the Google Assistant, Siri, or Alexa is to localize the output to many languages. This paper explores doing this by applying machine translation to the English output. Using machine translation is very scalable, as it can work with any English output and can handle dynamic text, but otherwise the problem is a poor fit. The required quality bar is close to perfection, the range of sentences is extremely narrow, and the sentences are often very different than the ones in the machine translation training data. This combination of requirements is novel in the field of domain adaptation for machine translation. We are able to reach the required quality bar by building on existing ideas and adding new ones: finetuning on in-domain translations, adding sentences from the Web, adding semantic annotations, and using automatic error detection. The paper shares our approach and results, together with a distillation model to serve the translation models at scale.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا