Do you want to publish a course? Click here

SIMMC 2.0: A Task-oriented Dialog Dataset for Immersive Multimodal Conversations

180   0   0.0 ( 0 )
 Added by Satwik Kottur
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We present a new corpus for the Situated and Interactive Multimodal Conversations, SIMMC 2.0, aimed at building a successful multimodal assistant agent. Specifically, the dataset features 11K task-oriented dialogs (117K utterances) between a user and a virtual assistant on the shopping domain (fashion and furniture), grounded in situated and photo-realistic VR scenes. The dialogs are collected using a two-phase pipeline, which first generates simulated dialog flows via a novel multimodal dialog simulator we propose, followed by manual paraphrasing of the generated utterances. In this paper, we provide an in-depth analysis of the collected dataset, and describe in detail the four main benchmark tasks we propose for SIMMC 2.0. The preliminary analysis with a baseline model highlights the new challenges that the SIMMC 2.0 dataset brings, suggesting new directions for future research. Our dataset and code will be made publicly available.



rate research

Read More

Semantic parsing using hierarchical representations has recently been proposed for task oriented dialog with promising results [Gupta et al 2018]. In this paper, we present three different improvements to the model: contextualized embeddings, ensembling, and pairwise re-ranking based on a language model. We taxonomize the errors possible for the hierarchical representation, such as wrong top intent, missing spans or split spans, and show that the three approaches correct different kinds of errors. The best model combines the three techniques and gives 6.4% better exact match accuracy than the state-of-the-art, with an error reduction of 33%, resulting in a new state-of-the-art result on the Task Oriented Parsing (TOP) dataset.
The recent success of large pre-trained language models such as BERT and GPT-2 has suggested the effectiveness of incorporating language priors in downstream dialog generation tasks. However, the performance of pre-trained models on the dialog task is not as optimal as expected. In this paper, we propose a Pre-trained Role Alternating Language model (PRAL), designed specifically for task-oriented conversational systems. We adopted (Wu et al., 2019) that models two speakers separately. We also design several techniques, such as start position randomization, knowledge distillation, and history discount to improve pre-training performance. We introduce a task-oriented dialog pretraining dataset by cleaning 13 existing data sets. We test PRAL on three different downstream tasks. The results show that PRAL performs better or on par with state-of-the-art methods.
Traditionally, industry solutions for building a task-oriented dialog system have relied on helping dialog authors define rule-based dialog managers, represented as dialog flows. While dialog flows are intuitively interpretable and good for simple scenarios, they fall short of performance in terms of the flexibility needed to handle complex dialogs. On the other hand, purely machine-learned models can handle complex dialogs, but they are considered to be black boxes and require large amounts of training data. In this demonstration, we showcase Conversation Learner, a machine teaching tool for building dialog managers. It combines the best of both approaches by enabling dialog authors to create a dialog flow using familiar tools, converting the dialog flow into a parametric model (e.g., neural networks), and allowing dialog authors to improve the dialog manager (i.e., the parametric model) over time by leveraging user-system dialog logs as training data through a machine teaching interface.
Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techniques respectively. Similar to adversarial attack problems with computer vision models discussed in existing literature, these intent-slot tagging models are often over-sensitive to small variations in input -- predicting different and often incorrect labels when small changes are made to a query, thus reducing their accuracy and reliability. However, evaluating a models robustness to these changes is harder for language since words are discrete and an automated change (e.g. adding `noise) to a query sometimes changes the meaning and thus labels of a query. In this paper, we first describe how to create an adversarial test set to measure the robustness of these models. Furthermore, we introduce and adapt adversarial training methods as well as data augmentation using back-translation to mitigate these issues. Our experiments show that both techniques improve the robustness of the system substantially and can be combined to yield the best results.
While Machine Comprehension (MC) has attracted extensive research interests in recent years, existing approaches mainly belong to the category of Machine Reading Comprehension task which mines textual inputs (paragraphs and questions) to predict the answers (choices or text spans). However, there are a lot of MC tasks that accept audio input in addition to the textual input, e.g. English listening comprehension test. In this paper, we target the problem of Audio-Oriented Multimodal Machine Comprehension, and its goal is to answer questions based on the given audio and textual information. To solve this problem, we propose a Dynamic Inter- and Intra-modality Attention (DIIA) model to effectively fuse the two modalities (audio and textual). DIIA can work as an independent component and thus be easily integrated into existing MC models. Moreover, we further develop a Multimodal Knowledge Distillation (MKD) module to enable our multimodal MC model to accurately predict the answers based only on either the text or the audio. As a result, the proposed approach can handle various tasks including: Audio-Oriented Multimodal Machine Comprehension, Machine Reading Comprehension and Machine Listening Comprehension, in a single model, making fair comparisons possible between our model and the existing unimodal MC models. Experimental results and analysis prove the effectiveness of the proposed approaches. First, the proposed DIIA boosts the baseline models by up to 21.08% in terms of accuracy; Second, under the unimodal scenarios, the MKD module allows our multimodal MC model to significantly outperform the unimodal models by up to 18.87%, which are trained and tested with only audio or textual data.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا