No Arabic abstract
Over 97 million people speak Vietnamese as their native language in the world. However, there are few research studies on machine reading comprehension (MRC) for Vietnamese, the task of understanding a text and answering questions related to it. Due to the lack of benchmark datasets for Vietnamese, we present the Vietnamese Question Answering Dataset (UIT-ViQuAD), a new dataset for the low-resource language as Vietnamese to evaluate MRC models. This dataset comprises over 23,000 human-generated question-answer pairs based on 5,109 passages of 174 Vietnamese articles from Wikipedia. In particular, we propose a new process of dataset creation for Vietnamese MRC. Our in-depth analyses illustrate that our dataset requires abilities beyond simple reasoning like word matching and demands single-sentence and multiple-sentence inferences. Besides, we conduct experiments on state-of-the-art MRC methods for English and Chinese as the first experimental models on UIT-ViQuAD. We also estimate human performance on the dataset and compare it to the experimental results of powerful machine learning models. As a result, the substantial differences between human performance and the best model performance on the dataset indicate that improvements can be made on UIT-ViQuAD in future research. Our dataset is freely available on our website to encourage the research community to overcome challenges in Vietnamese MRC.
The development of natural language processing (NLP) in general and machine reading comprehension in particular has attracted the great attention of the research community. In recent years, there are a few datasets for machine reading comprehension tasks in Vietnamese with large sizes, such as UIT-ViQuAD and UIT-ViNewsQA. However, the datasets are not diverse in answers to serve the research. In this paper, we introduce UIT-ViWikiQA, the first dataset for evaluating sentence extraction-based machine reading comprehension in the Vietnamese language. The UIT-ViWikiQA dataset is converted from the UIT-ViQuAD dataset, consisting of comprises 23.074 question-answers based on 5.109 passages of 174 Wikipedia Vietnamese articles. We propose a conversion algorithm to create the dataset for sentence extraction-based machine reading comprehension and three types of approaches for sentence extraction-based machine reading comprehension in Vietnamese. Our experiments show that the best machine model is XLM-R_Large, which achieves an exact match (EM) of 85.97% and an F1-score of 88.77% on our dataset. Besides, we analyze experimental results in terms of the question type in Vietnamese and the effect of context on the performance of the MRC models, thereby showing the challenges from the UIT-ViWikiQA dataset that we propose to the language processing community.
Large-scale and high-quality corpora are necessary for evaluating machine reading comprehension models on a low-resource language like Vietnamese. Besides, machine reading comprehension (MRC) for the health domain offers great potential for practical applications; however, there is still very little MRC research in this domain. This paper presents ViNewsQA as a new corpus for the Vietnamese language to evaluate healthcare reading comprehension models. The corpus comprises 22,057 human-generated question-answer pairs. Crowd-workers create the questions and their answers based on a collection of over 4,416 online Vietnamese healthcare news articles, where the answers comprise spans extracted from the corresponding articles. In particular, we develop a process of creating a corpus for the Vietnamese machine reading comprehension. Comprehensive evaluations demonstrate that our corpus requires abilities beyond simple reasoning, such as word matching and demanding difficult reasoning based on single-or-multiple-sentence information. We conduct experiments using different types of machine reading comprehension methods to achieve the first baseline performances, compared with further models performances. We also measure human performance on the corpus and compared it with several powerful neural network-based and transfer learning-based models. Our experiments show that the best machine model is ALBERT, which achieves an exact match score of 65.26% and an F1-score of 84.89% on our corpus. The significant differences between humans and the best-performance model (14.53% of EM and 10.90% of F1-score) on the test set of our corpus indicate that improvements in ViNewsQA could be explored in the future study. Our corpus is publicly available on our website for the research purpose to encourage the research community to make these improvements.
Posing reading comprehension as a generation problem provides a great deal of flexibility, allowing for open-ended questions with few restrictions on possible answers. However, progress is impeded by existing generation metrics, which rely on token overlap and are agnostic to the nuances of reading comprehension. To address this, we introduce a benchmark for training and evaluating generative reading comprehension metrics: MOdeling Correctness with Human Annotations. MOCHA contains 40K human judgement scores on model outputs from 6 diverse question answering datasets and an additional set of minimal pairs for evaluation. Using MOCHA, we train a Learned Evaluation metric for Reading Comprehension, LERC, to mimic human judgement scores. LERC outperforms baseline metrics by 10 to 36 absolute Pearson points on held-out annotations. When we evaluate robustness on minimal pairs, LERC achieves 80% accuracy, outperforming baselines by 14 to 26 absolute percentage points while leaving significant room for improvement. MOCHA presents a challenging problem for developing accurate and robust generative reading comprehension metrics.
Understanding how events are semantically related to each other is the essence of reading comprehension. Recent event-centric reading comprehension datasets focus mostly on event arguments or temporal relations. While these tasks partially evaluate machines ability of narrative understanding, human-like reading comprehension requires the capability to process event-based information beyond arguments and temporal reasoning. For example, to understand causality between events, we need to infer motivation or purpose; to establish event hierarchy, we need to understand the composition of events. To facilitate these tasks, we introduce ESTER, a comprehensive machine reading comprehension (MRC) dataset for Event Semantic Relation Reasoning. The dataset leverages natural language queries to reason about the five most common event semantic relations, provides more than 6K questions and captures 10.1K event relation pairs. Experimental results show that the current SOTA systems achieve 22.1%, 63.3%, and 83.5% for token-based exact-match, F1, and event-based HIT@1 scores, which are all significantly below human performances (36.0%, 79.6%, 100% respectively), highlighting our dataset as a challenging benchmark.
Machine reading is a fundamental task for testing the capability of natural language understanding, which is closely related to human cognition in many aspects. With the rising of deep learning techniques, algorithmic models rival human performances on simple QA, and thus increasingly challenging machine reading datasets have been proposed. Though various challenges such as evidence integration and commonsense knowledge have been integrated, one of the fundamental capabilities in human reading, namely logical reasoning, is not fully investigated. We build a comprehensive dataset, named LogiQA, which is sourced from expert-written questions for testing human Logical reasoning. It consists of 8,678 QA instances, covering multiple types of deductive reasoning. Results show that state-of-the-art neural models perform by far worse than human ceiling. Our dataset can also serve as a benchmark for reinvestigating logical AI under the deep learning NLP setting. The dataset is freely available at https://github.com/lgw863/LogiQA-dataset