Do you want to publish a course? Click here

Moments of Orthogonal Polynomials and Exponential Generating Functions

129   0   0.0 ( 0 )
 Added by Jiang Zeng
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Starting from the moment sequences of classical orthogonal polynomials we derive the orthogonality purely algebraically. We consider also the moments of ($q=1$) classical orthogonal polynomials, and study those cases in which the exponential generating function has a nice form. In the opposite direction, we show that the generalized Dumont-Foata polynomials with six parameters are the moments of rescaled continuous dual Hahn polynomials.



rate research

Read More

We present a formula that expresses the Hankel determinants of a linear combination of length $d+1$ of moments of orthogonal polynomials in terms of a $dtimes d$ determinant of the orthogonal polynomials. This formula exists somehow hidden in the folklore of the theory of orthogonal polynomials but deserves to be better known, and be presented correctly and with full proof. We present four fundamentally different proofs, one that uses classical formulae from the theory of orthogonal polynomials, one that uses a vanishing argument and is due to Elouafi [J. Math. Anal. Appl. 431} (2015), 1253-1274] (but given in an incomplete form there), one that is inspired by random matrix theory and is due to Brezin and Hikami [Comm. Math. Phys. 214 (2000), 111-135], and one that uses (Dodgson) condensation. We give two applications of the formula. In the first application, we explain how to compute such Hankel determinants in a singular case. The second application concerns the linear recurrence of such Hankel determinants for a certain class of moments that covers numerous classical combinatorial sequences, including Catalan numbers, Motzkin numbers, central binomial coefficients, central trinomial coefficients, central Delannoy numbers, Schroder numbers, Riordan numbers, and Fine numbers.
270 - C. Krattenthaler 2021
Let $p_n(x)$, $n=0,1,dots$, be the orthogonal polynomials with respect to a given density $dmu(x)$. Furthermore, let $d u(x)$ be a density which arises from $dmu(x)$ by multiplication by a rational function in $x$. We prove a formula that expresses the Hankel determinants of moments of $d u(x)$ in terms of a determinant involving the orthogonal polynomials $p_n(x)$ and associated functions $q_n(x)=int p_n(u) ,dmu(u)/(x-u)$. Uvarovs formula for the orthogonal polynomials with respect to $d u(x)$ is a corollary of our theorem. Our result generalises a Hankel determinant formula for the case where the rational function is a polynomial that existed somehow hidden in the folklore of the theory of orthogonal polynomials but has been stated explicitly only relatively recently (see [arXiv:2101.04225]). Our theorem can be interpreted in a two-fold way: analytically or in the sense of formal series. We apply our theorem to derive several curious Hankel determinant evaluations.
138 - Peter C. Gibson 2015
We introduce a new family of orthogonal polynomials on the disk that has emerged in the context of wave propagation in layered media. Unlike known examples, the polynomials are orthogonal with respect to a measure all of whose even moments are infinite.
66 - Richard J. Mathar 2021
We derive the P-finite recurrences for classes of sequences with ordinary generating function containing roots of polynomials. The focus is on establishing the D-finite differential equations such that the familiar steps of reducing their power series expansions apply.
104 - Miklos Laczkovich 2018
Let $G$ be a topological commutative semigroup with unit. We prove that a continuous function $fcolon Gto cc$ is a generalized exponential polynomial if and only if there is an $nge 2$ such that $f(x_1 +ldots +x_n )$ is decomposable; that is, if $f(x_1 +ldots +x_n )=sumik u_i cd v_i$, where the function $u_i$ only depends on the variables belonging to a set $emp e E_i subsetneq { x_1 stb x_n }$, and $v_i$ only depends on the variables belonging to ${ x_1 stb x_n } se E_i$ $(i=1stb k)$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا