Do you want to publish a course? Click here

A determinant identity for moments of orthogonal polynomials that implies Uvarovs formula for the orthogonal polynomials of rationally related densities

271   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $p_n(x)$, $n=0,1,dots$, be the orthogonal polynomials with respect to a given density $dmu(x)$. Furthermore, let $d u(x)$ be a density which arises from $dmu(x)$ by multiplication by a rational function in $x$. We prove a formula that expresses the Hankel determinants of moments of $d u(x)$ in terms of a determinant involving the orthogonal polynomials $p_n(x)$ and associated functions $q_n(x)=int p_n(u) ,dmu(u)/(x-u)$. Uvarovs formula for the orthogonal polynomials with respect to $d u(x)$ is a corollary of our theorem. Our result generalises a Hankel determinant formula for the case where the rational function is a polynomial that existed somehow hidden in the folklore of the theory of orthogonal polynomials but has been stated explicitly only relatively recently (see [arXiv:2101.04225]). Our theorem can be interpreted in a two-fold way: analytically or in the sense of formal series. We apply our theorem to derive several curious Hankel determinant evaluations.



rate research

Read More

We present a formula that expresses the Hankel determinants of a linear combination of length $d+1$ of moments of orthogonal polynomials in terms of a $dtimes d$ determinant of the orthogonal polynomials. This formula exists somehow hidden in the folklore of the theory of orthogonal polynomials but deserves to be better known, and be presented correctly and with full proof. We present four fundamentally different proofs, one that uses classical formulae from the theory of orthogonal polynomials, one that uses a vanishing argument and is due to Elouafi [J. Math. Anal. Appl. 431} (2015), 1253-1274] (but given in an incomplete form there), one that is inspired by random matrix theory and is due to Brezin and Hikami [Comm. Math. Phys. 214 (2000), 111-135], and one that uses (Dodgson) condensation. We give two applications of the formula. In the first application, we explain how to compute such Hankel determinants in a singular case. The second application concerns the linear recurrence of such Hankel determinants for a certain class of moments that covers numerous classical combinatorial sequences, including Catalan numbers, Motzkin numbers, central binomial coefficients, central trinomial coefficients, central Delannoy numbers, Schroder numbers, Riordan numbers, and Fine numbers.
A new recurrence relation for exceptional orthogonal polynomials is proposed, which holds for type 1, 2 and 3. As concrete examples, the recurrence relations are given for Xj-Hermite, Laguerre and Jacobi polynomials in j = 1,2 case.
128 - Ira M. Gessel , Jiang Zeng 2021
Starting from the moment sequences of classical orthogonal polynomials we derive the orthogonality purely algebraically. We consider also the moments of ($q=1$) classical orthogonal polynomials, and study those cases in which the exponential generating function has a nice form. In the opposite direction, we show that the generalized Dumont-Foata polynomials with six parameters are the moments of rescaled continuous dual Hahn polynomials.
We analyze the effect of symmetrization in the theory of multiple orthogonal polynomials. For a symmetric sequence of type II multiple orthogonal polynomials satisfying a high-term recurrence relation, we fully characterize the Weyl function associated to the corresponding block Jacobi matrix as well as the Stieltjes matrix function. Next, from an arbitrary sequence of type II multiple orthogonal polynomials with respect to a set of d linear functionals, we obtain a total of d+1 sequences of type II multiple orthogonal polynomials, which can be used to construct a new sequence of symmetric type II multiple orthogonal polynomials. Finally, we prove a Favard-type result for certain sequences of matrix multiple orthogonal polynomials satisfying a matrix four-term recurrence relation with matrix coefficients.
139 - Peter C. Gibson 2015
We introduce a new family of orthogonal polynomials on the disk that has emerged in the context of wave propagation in layered media. Unlike known examples, the polynomials are orthogonal with respect to a measure all of whose even moments are infinite.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا