No Arabic abstract
Let $G$ be a topological commutative semigroup with unit. We prove that a continuous function $fcolon Gto cc$ is a generalized exponential polynomial if and only if there is an $nge 2$ such that $f(x_1 +ldots +x_n )$ is decomposable; that is, if $f(x_1 +ldots +x_n )=sumik u_i cd v_i$, where the function $u_i$ only depends on the variables belonging to a set $emp e E_i subsetneq { x_1 stb x_n }$, and $v_i$ only depends on the variables belonging to ${ x_1 stb x_n } se E_i$ $(i=1stb k)$.
Starting from the moment sequences of classical orthogonal polynomials we derive the orthogonality purely algebraically. We consider also the moments of ($q=1$) classical orthogonal polynomials, and study those cases in which the exponential generating function has a nice form. In the opposite direction, we show that the generalized Dumont-Foata polynomials with six parameters are the moments of rescaled continuous dual Hahn polynomials.
We present a characterization of one-component inner functions in terms of the location of their zeros and their associated singular measure. As consequence we answer several questions posed by J. Cima and R. Mortini. In particular we prove that for any inner function $Theta$ whose singular set has measure zero, one can find a Blaschke product $B$ such that $Theta B$ is one-component. We also obtain a characterization of one-component singular inner functions which is used to produce examples of discrete and continuous one-component singular inner functions.
The Cholesky factorization of the moment matrix is applied to discrete orthogonal polynomials on the homogeneous lattice. In particular, semiclassical discrete orthogonal polynomials, which are built in terms of a discrete Pearson equation, are studied. The Laguerre-Freud structure semi-infinite matrix that models the shifts by $pm 1$ in the independent variable of the set of orthogonal polynomials is introduced. In the semiclassical case it is proven that this Laguerre-Freud matrix is banded. From the well known fact that moments of the semiclassical weights are logarithmic derivatives of generalized hypergeometric functions, it is shown how the contiguous relations for these hypergeometric functions translate as symmetries for the corresponding moment matrix. It is found that the 3D Nijhoff-Capel discrete Toda lattice describes the corresponding contiguous shifts for the squared norms of the orthogonal polynomials. The continuous Toda for these semiclassical discrete orthogonal polynomials is discussed and the compatibility equations are derived. It also shown that the Kadomtesev-Petvishvilii equation is connected to an adequate deformed semiclassical discrete weight, but in this case the deformation do not satisfy a Pearson equation.
This paper deals with the solution of unified fractional reaction-diffusion systems. The results are obtained in compact and elegant forms in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation. On account of the most general character of the derived results, numerous results on fractional reaction, fractional diffusion, and fractional reaction-diffusion problems scattered in the literature, including the recently derived results by the authors for reaction-diffusion models, follow as special cases.
Orbit functions of a simple Lie group/Lie algebra L consist of exponential functions summed up over the Weyl group of L. They are labeled by the highest weights of irreducible finite dimensional representations of L. They are of three types: C-, S- and E-functions. Orbit functions of the Lie algebras An, or equivalently, of the Lie group SU(n+1), are considered. First, orbit functions in two different bases - one orthonormal, the other given by the simple roots of SU(n) - are written using the isomorphism of the permutation group of n elements and the Weyl group of SU(n). Secondly, it is demonstrated that there is a one-to-one correspondence between classical Chebyshev polynomials of the first and second kind, and C- and $S$-functions of the simple Lie group SU(2). It is then shown that the well-known orbit functions of SU(n) are straightforward generalizations of Chebyshev polynomials to n-1 variables. Properties of the orbit functions provide a wealth of properties of the polynomials. Finally, multivariate exponential functions are considered, and their connection with orbit functions of SU(n) is established.