Do you want to publish a course? Click here

Non-spherical dark matter structures detection

60   0   0.0 ( 0 )
 Added by Nicolas Loizeau
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A rotation curve inequality that holds for spherically symmetric mass distributions is derived, and tested against the SPARC galaxy rotation curves dataset. We identify several Galaxies, eg NGC7793 and UGC05253, which are candidates for hosting non-spherical dark matter structures that could be detected by more precise measurements.



rate research

Read More

Recently a theory about the formation of over-densities of stars along tidal tails of globular clusters has been presented, this theory predicts the position and time of formation of such over-densities and was successfully tested with N-body simulations of globular clusters in a point mass galactic potential. In this work we present a comparison between this theory and our simulations using a dwarf galaxy orbiting two differently shaped dark matter halos to study the effects of a cored and a cuspy halo on the formation and evolution of tidal tails. We find no difference using a cuspy or a cored halo, however, we find an intriguing asymmetry between the leading and trailing arm of the tidal tails. The trailing arm grows faster than the leading arm. This asymmetry is seen in the distance to first over-density and its size as well. We establish a relation between the distance to the first over-density and the size of this over-density.
206 - M. Kuhlen , N. Weiner , J. Diemand 2009
The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found.
The observation of galaxy and gas distributions, as well as cosmological simulations in a $Lambda$CDM Universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a Dark Matter--Dark Energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer--Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of $-1.99^{+2.56}_{-16.00}$, compatible with no interaction, but also a compounded rest virial ratio of $-0.79 pm 0.13$, which would entail a $2sigma$ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.
The extragalactic dark matter (DM) annihilation signal depends on the product of the clumping factor, <delta^2>, and the velocity-weighted annihilation cross section, sigma v. This clumping factor-sigma v degeneracy can be broken by comparing DM annihilation signals from multiple sources. In particular, one can constrain the minimum DM halo mass, M_min, which depends on the mass of the DM particles and the kinetic decoupling temperature, by comparing observations of individual DM sources to the diffuse DM annihilation signal. We demonstrate this with careful semi-analytic treatments of the DM contribution to the diffuse Isotropic Gamma-Ray Background (IGRB), and compare it with two recent hints of DM from the Galactic Center, namely, ~130 GeV DM annihilating dominantly in the chichi to gammagamma channel, and (10-30) GeV DM annihilating in the chichi to bbar{b} or chichi to tau^{+}tau^{-} channels. We show that, even in the most conservative analysis, the Fermi IGRB measurement already provides interesting sensitivity. A more detailed analysis of the IGRB, with new Fermi IGRB measurements and modeling of astrophysical backgrounds, may be able to probe values of M_min up to 1 M_sun for the 130 GeV candidate and 10^{-6} M_sun for the light DM candidates. Increasing the substructure content of halos by a reasonable amount would further improve these constraints.
216 - C. Grignon 2010
Directional detection of non-baryonic Dark Matter is a promising search strategy for discriminating genuine WIMP events from background ones. However, carrying out such a strategy requires both a precise measurement of the energy down to a few keV and 3D reconstruction of tracks down to a few mm. To achieve this goal, the MIMAC project has been developed: it is based on a gaseous micro-TPC matrix, filled with 3He, CF4 and/or C4H10. Firsts results of low energy nuclei recoils obtained with a low energy neutron field are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا