Do you want to publish a course? Click here

Dark Matter Direct Detection with Non-Maxwellian Velocity Structure

197   0   0.0 ( 0 )
 Added by Michael Kuhlen
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

The velocity distribution function of dark matter particles is expected to show significant departures from a Maxwell-Boltzmann distribution. This can have profound effects on the predicted dark matter - nucleon scattering rates in direct detection experiments, especially for dark matter models in which the scattering is sensitive to the high velocity tail of the distribution, such as inelastic dark matter (iDM) or light (few GeV) dark matter (LDM), and for experiments that require high energy recoil events, such as many directionally sensitive experiments. Here we determine the velocity distribution functions from two of the highest resolution numerical simulations of Galactic dark matter structure (Via Lactea II and GHALO), and study the effects for these scenarios. For directional detection, we find that the observed departures from Maxwell-Boltzmann increase the contrast of the signal and change the typical direction of incoming DM particles. For iDM, the expected signals at direct detection experiments are changed dramatically: the annual modulation can be enhanced by more than a factor two, and the relative rates of DAMA compared to CDMS can change by an order of magnitude, while those compared to CRESST can change by a factor of two. The spectrum of the signal can also change dramatically, with many features arising due to substructure. For LDM the spectral effects are smaller, but changes do arise that improve the compatibility with existing experiments. We find that the phase of the modulation can depend upon energy, which would help discriminate against background should it be found.



rate research

Read More

224 - Chung-Lin Shan 2015
In this paper, we investigate the modification of our expressions developed for the model-independent data analysis procedure of the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) with a non-negligible experimental threshold energy. Our numerical simulations show that, for a minimal reconstructable velocity of as high as O(200) km/s, our model-independent modification of the estimator for the normalization constant could provide precise reconstructed velocity distribution points to match the true WIMP velocity distribution with a <~ 10% bias.
The next generation of axion direct detection experiments may rule out or confirm axions as the dominant source of dark matter. We develop a general likelihood-based framework for studying the time-series data at such experiments, with a focus on the role of dark-matter astrophysics, to search for signatures of the QCD axion or axion like particles. We illustrate how in the event of a detection the likelihood framework may be used to extract measures of the local dark matter phase-space distribution, accounting for effects such as annual modulation and gravitational focusing, which is the perturbation to the dark matter phase-space distribution by the gravitational field of the Sun. Moreover, we show how potential dark matter substructure, such as cold dark matter streams or a thick dark disk, could impact the signal. For example, we find that when the bulk dark matter halo is detected at 5$sigma$ global significance, the unique time-dependent features imprinted by the dark matter component of the Sagittarius stream, even if only a few percent of the local dark matter density, may be detectable at $sim$2$sigma$ significance. A co-rotating dark disk, with lag speed $sim$50 km$/$s, that is $sim$20$%$ of the local DM density could dominate the signal, while colder but as-of-yet unknown substructure may be even more important. Our likelihood formalism, and the results derived with it, are generally applicable to any time-series based approach to axion direct detection.
112 - Chung-Lin Shan 2014
In this paper, we extended our earlier work on the reconstruction of the (time-averaged) one-dimensional velocity distribution of Galactic Weakly Interacting Massive Particles (WIMPs) and introduce the Bayesian fitting procedure to the theoretically predicted velocity distribution functions. In this reconstruction process, the (rough) velocity distribution reconstructed by using raw data from direct Dark Matter detection experiments directly, i.e. measured recoil energies, with one or more different target materials, has been used as reconstructed-input information. By assuming a fitting velocity distribution function and scanning the parameter space based on the Bayesian analysis, the astronomical characteristic parameters, e.g. the Solar and Earths Galactic velocities, will be pinned down as the output results. Our Monte-Carlo simulations show that this Bayesian scanning procedure could reconstruct the true (input) WIMP velocity distribution function pretty precisely with negligible systematic deviations of the reconstructed characteristic Solar and Earths velocities and 1 sigma statistical uncertainties of <~ 20 km/s. Moreover, for the use of an improper fitting velocity distribution function, our reconstruction process could still offer useful information about the shape of the velocity distribution. In addition, by comparing these estimates to theoretical predictions, one could distinguish different (basic) functional forms of the theoretically predicted one-dimensional WIMP velocity distribution function with 2 sigma to 4 sigma confidence levels.
A rotation curve inequality that holds for spherically symmetric mass distributions is derived, and tested against the SPARC galaxy rotation curves dataset. We identify several Galaxies, eg NGC7793 and UGC05253, which are candidates for hosting non-spherical dark matter structures that could be detected by more precise measurements.
In direct dark matter detection experiments, conventional elastic scattering of WIMPs results in exponentially falling recoil spectra. In contrast, theories of WIMPs with excited states can lead to nuclear recoil spectra that peak at finite recoil energies E_R. The peaks of such signals are typically fairly broad, with Delta E_R/E_peak ~ 1. We show that in the presence of dark matter structures with low velocity dispersion, such as streams or clumps, peaks from up-scattering can become extremely narrow with FWHM of a few keV only. This differs dramatically from the conventionally expected WIMP spectrum and would, once detected, open the possibility to measure the dark matter velocity structure with a fantastic accuracy. As an intriguing example, we confront the observed cluster of 3 events near 42 keV from the CRESST commissioning run with this scenario, and find a wide range of parameters capable for producing such a peak. We compare the possible signals at other experiments, and find that such a particle could also give rise to the signal at DAMA, although not from the same stream. Over some range of parameters a signal would be visible at xenon experiments. We show that such dark matter peaks are a very clear signal, and can be easily disentangled from potential backgrounds, both terrestrial or due to WIMP down-scattering, by an enhanced annual modulation signature in both the amplitude of the signal and its shape.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا