Do you want to publish a course? Click here

Non-virialised clusters for detection of Dark Energy-Dark Matter interaction

137   0   0.0 ( 0 )
 Added by Rafael Marcondes
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

The observation of galaxy and gas distributions, as well as cosmological simulations in a $Lambda$CDM Universe, suggests that clusters of galaxies are still accreting mass and are not expected to be in equilibrium. In this work, we investigate the possibility to evaluate the departure from virial equilibrium in order to detect, in that balance, effects from a Dark Matter--Dark Energy interaction. We continue, from previous works, using a simple model of interacting dark sector, the Layzer--Irvine equation for dynamical virial evolution, and employ optical observations in order to obtain the mass profiles through weak lensing and X-ray observations giving the intracluster gas temperatures. Through a Monte Carlo method, we generate, for a set of clusters, measurements of observed virial ratios, interaction strength, rest virial ratio and departure from equilibrium factors. We found a compounded interaction strength of $-1.99^{+2.56}_{-16.00}$, compatible with no interaction, but also a compounded rest virial ratio of $-0.79 pm 0.13$, which would entail a $2sigma$ detection. We confirm quantitatively that clusters of galaxies are out of equilibrium but further investigation is needed to constrain a possible interaction in the dark sector.



rate research

Read More

185 - Bo-Yu Pu , Xiao-Dong Xu , Bin Wang 2014
We study a class of early dark energy models which has substantial amount of dark energy in the early epoch of the universe. We examine the impact of the early dark energy fluctuations on the growth of structure and the CMB power spectrum in the linear approximation. Furthermore we investigate the influence of the interaction between the early dark energy and the dark matter and its effect on the structure growth and CMB. We finally constrain the early dark energy model parameters and the coupling between dark sectors by confronting to different observations.
In this paper we study a model of interacting dark energy - dark matter where the ratio between these components is not constant, changing from early to late times in such a way that the model can solve or alleviate the cosmic coincidence problem (CP). The interaction arises from an assumed relation of the form $rho_xproptorho_d^alpha$, where $rho_x$ and $rho_d$ are the energy densities of dark energy and dark matter components, respectively, and $alpha$ is a free parameter. For a dark energy equation of state parameter $w=-1$ we found that, if $alpha=0$, the standard $Lambda$CDM model is recovered, where the coincidence problem is unsolved. For $0<alpha<1$, the CP would be alleviated and for $alphasim 1$, the CP would be solved. The dark energy component is analyzed with both $w=-1$ and $w eq -1$. Using Supernovae type Ia and Hubble parameter data constraints, in the case $w=-1$ we find $alpha=0.109^{+0.062}_{-0.072}$ at 68% C.L., and the CP is alleviated. This model is also slightly favoured against nonflat $Lambda$CDM model by using a Bayesian Information Criterion (BIC) analysis. For $w eq-1$, a degeneracy arises on the $w$ - $alpha$ plane. In order to break such degeneracy we add cosmic microwave background distance priors and baryonic acoustic oscillations data to the constraints, yielding $alpha=-0.075pm 0.046$ at 68% C.L.. In this case we find that the CP is not alleviated even for 2$sigma$ interval for $alpha$. Furthermore, this last model is discarded against nonflat $Lambda$CDM according to BIC analysis.
We apply a parametric reconstruction method to a homogeneous, isotropic and spatially flat Friedmann-Robertson-Walker (FRW) cosmological model filled of a fluid of dark energy (DE) with constant equation of state (EOS) parameter interacting with dark matter (DM). The reconstruction method is based on expansions of the general interaction term and the relevant cosmological variables in terms of Chebyshev polynomials which form a complete set orthonormal functions. This interaction term describes an exchange of energy flow between the DE and DM within dark sector. To show how the method works we do the reconstruction of the interaction function expanding it in terms of only the first six Chebyshev polynomials and obtain the best estimation for the coefficients of the expansion assuming three models: (a) a DE equation of the state parameter $w =-1$ (an interacting cosmological $Lambda$), (b) a DE equation of the state parameter $w =$ constant with a dark matter density parameter fixed, (c) a DE equation of the state parameter $w =$ constant with a free constant dark matter density parameter to be estimated, and using the Union2 SNe Ia data set from The Supernova Cosmology Project (SCP) composed by 557 type Ia supernovae. In both cases, the preliminary reconstruction shows that in the best scenario there exist the possibility of a crossing of the noninteracting line Q=0 in the recent past within the $1sigma$ and $2sigma$ errors from positive values at early times to negative values at late times. This means that, in this reconstruction, there is an energy transfer from DE to DM at early times and an energy transfer from DM to DE at late times. We conclude that this fact is an indication of the possible existence of a crossing behavior in a general interaction coupling between dark components.
We investigate cosmological constraints on an energy density contribution of elastic dark matter self-interactions characterized by the mass of the exchange particle and coupling constant. Because of the expansion behaviour in a Robertson-Walker metric we investigate self-interacting dark matter that is warm in the case of thermal relics. The scaling behaviour of dark matter self-interaction energy density shows that it can be the dominant contribution (only) in the very early universe. Thus its impact on primordial nucleosynthesis is used to restrict the interaction strength, which we find to be at least as strong as the strong interaction. Furthermore we explore dark matter decoupling in a self-interaction dominated universe, which is done for the self-interacting warm dark matter as well as for collisionless cold dark matter in a two component scenario. We find that strong dark matter self-interactions do not contradict super-weak inelastic interactions between self-interacting dark matter and baryonic matter and that the natural scale of collisionless cold dark matter decoupling exceeds the weak scale and depends linearly on the particle mass. Finally structure formation analysis reveals a linear growing solution during self-interaction domination; however, only non-cosmological scales are enhanced.
We consider a dark energy scenario driven by a scalar field $phi$ with a pseudo Nambu Goldstone boson (pNGB) type potential $V(phi)=mu^4 left( 1+ {rm cos}(phi/f) right)$. The pNGB originates out of breaking of spontaneous symmetry at a scale $f$ close to Planck mass $M_{rm{pl}}$. We consider two cases namely the quintessence dark energy and the other, where the standard pNGB action is modified by the terms related to Slotheon cosmology. We demonstrate that for this pNGB potential, high-$f$ problem is better addressed when interaction between dark matter and dark energy is taken into account and that Slotheon dark energy scenario works even better over quintessence in this respect. To this end, a mass limit for dark matter is also estimated.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا