No Arabic abstract
The extragalactic dark matter (DM) annihilation signal depends on the product of the clumping factor, <delta^2>, and the velocity-weighted annihilation cross section, sigma v. This clumping factor-sigma v degeneracy can be broken by comparing DM annihilation signals from multiple sources. In particular, one can constrain the minimum DM halo mass, M_min, which depends on the mass of the DM particles and the kinetic decoupling temperature, by comparing observations of individual DM sources to the diffuse DM annihilation signal. We demonstrate this with careful semi-analytic treatments of the DM contribution to the diffuse Isotropic Gamma-Ray Background (IGRB), and compare it with two recent hints of DM from the Galactic Center, namely, ~130 GeV DM annihilating dominantly in the chichi to gammagamma channel, and (10-30) GeV DM annihilating in the chichi to bbar{b} or chichi to tau^{+}tau^{-} channels. We show that, even in the most conservative analysis, the Fermi IGRB measurement already provides interesting sensitivity. A more detailed analysis of the IGRB, with new Fermi IGRB measurements and modeling of astrophysical backgrounds, may be able to probe values of M_min up to 1 M_sun for the 130 GeV candidate and 10^{-6} M_sun for the light DM candidates. Increasing the substructure content of halos by a reasonable amount would further improve these constraints.
The astrophysics community is considering plans for a variety of gamma-ray telescopes (including ACT and GRIPS) in the energy range 1--100 MeV, which can fill in the so-called MeV gap in current sensitivity. We investigate the utility of such detectors for the study of low-mass dark matter annihilation or decay. For annihilating (decaying) dark matter with a mass below about 140 MeV (280 MeV) and couplings to first generation quarks, the final states will be dominated by photons or neutral pions, producing striking signals in gamma-ray telescopes. We determine the sensitivity of future detectors to the kinematically allowed final states. In particular, we find that planned detectors can improve on current sensitivity to this class of models by up to a few orders of magnitude.
This white paper describes the basic idea for indirect dark matter searches using antideuterons. Low energy antideuterons produced by dark matter annihilations/decays provide an attractive dark matter signature, due to the low astrophysical background. The current and future experiments have a strong potential to detect antideuterons from dark matter. They are complementary not only with each other, but also with other dark matter searches.
The next generation of large scale WIMP direct detection experiments have the potential to go beyond the discovery phase and reveal detailed information about both the particle physics and astrophysics of dark matter. We report here on early results arising from the development of a detailed numerical code modeling the proposed DARWIN detector, involving both liquid argon and xenon targets. We incorporate realistic detector physics, particle physics and astrophysical uncertainties and demonstrate to what extent two targets with similar sensitivities can remove various degeneracies and allow a determination of dark matter cross sections and masses while also probing rough aspects of the dark matter phase space distribution. We find that, even assuming dominance of spin-independent scattering, multi-ton scale experiments still have degeneracies that depend sensitively on the dark matter mass, and on the possibility of isospin violation and inelasticity in interactions. We find that these experiments are best able to discriminate dark matter properties for dark matter masses less than around 200 GeV. In addition, and somewhat surprisingly, the use of two targets gives only a small improvement (aside from the advantage of different systematics associated with any claimed signal) in the ability to pin down dark matter parameters when compared with one target of larger exposure.
We investigate the feasibility of the indirect detection of dark matter in a simple model using the neutrino portal. The model is very economical, with right-handed neutrinos generating neutrino masses through the Type-I seesaw mechanism and simultaneously mediating interactions with dark matter. Given the small neutrino Yukawa couplings expected in a Type-I seesaw, direct detection and accelerator probes of dark matter in this scenario are challenging. However, dark matter can efficiently annihilate to right-handed neutrinos, which then decay via active-sterile mixing through the weak interactions, leading to a variety of indirect astronomical signatures. We derive the existing constraints on this scenario from Planck cosmic microwave background measurements, Fermi dwarf spheroidal galaxies and Galactic Center gamma-rays observations, and Alpha Magnetic Spectrometer - 02 antiprotons observations, and also discuss the future prospects of Fermi and the Cherenkov Telescope Array. Thermal annihilation rates are already being probed for dark matter lighter than about 50 GeV, and this can be extended to dark matter masses of 100 GeV and beyond in the future. This scenario can also provide a dark matter interpretation of the Fermi Galactic Center gamma ray excess, and we confront this interpretation with other indirect constraints. Finally we discuss some of the exciting implications of extensions of the minimal model with large neutrino Yukawa couplings and Higgs portal couplings.
As part of the Snowmass process, the Cosmic Frontier Indirect-Detection subgroup (CF2) has drawn on input from the Cosmic Frontier and the broader Particle Physics community to produce this document. The purposes of this report are to identify opportunities for dark matter science through indirect detection, to give an overview of the primary scientific drivers for indirect searches for dark matter, and to survey current and planned experiments that have, as a large part of their scientific program, the goal of searching for indirect (or astrophysical) signatures of dark matter. We primarily address existing experiments with a large U.S. role, or future experiments where a U.S. contribution is sought. We also address the limitations of this technique, and answer the tough questions relevant to this subgroup posed by the HEP community through the Snowmass process.