Do you want to publish a course? Click here

Two 6d origins of 4d SCFTs: class $mathcal{S}$ and 6d (1,0) on a torus

149   0   0.0 ( 0 )
 Added by Monica Jinwoo Kang
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $(1,0)$ SCFT compactified on a torus, which we check by identifying and comparing the central charges and the flavor symmetry. Each 6d theory is identified with a complex structure deformation of $(mathfrak{e}_n,mathfrak{e}_n)$ minimal conformal matter, which corresponds to a Higgs branch renormalization group flow. We find that this structure is precisely replicated by the partial closure of the punctures in the class $mathcal{S}$ construction. We explain how the plurality of origins makes manifest some aspects of 4d SCFTs, including flavor symmetry enhancements and determining if it is a product SCFT. We further highlight the string theoretic basis for this identification of 4d theories from different origins via mirror symmetry.



rate research

Read More

Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs which are also generalized quivers. Taking products of bifundamental conformal matter operators, we present evidence that there are large R-charge sectors of the theory in which operator mixing is captured by a 1D spin chain Hamiltonian with operator scaling dimensions controlled by a perturbation series in inverse powers of the R-charge. We regulate the inherent divergences present in the 6D computations with the associated 5D Kaluza--Klein theory. In the case of 6D SCFTs obtained from M5-branes probing a $mathbb{C}^{2}/mathbb{Z}_{K}$ singularity, we show that there is a class of operators where the leading order mixing effects are captured by the integrable Heisenberg $XXX_{s=1/2}$ spin chain with open boundary conditions, and similar considerations hold for its $T^2$ reduction to a 4D $mathcal{N}=2$ SCFT. In the case of M5-branes probing more general D- and E-type singularities where generalized quivers have conformal matter, we argue that similar mixing effects are captured by an integrable $XXX_{s}$ spin chain with $s>1/2$. We also briefly discuss some generalizations to other operator sectors as well as little string theories.
Compactifications of 6d N=(1,0) SCFTs give rise to new 4d N=1 SCFTs and shed light on interesting dualities between such theories. In this paper we continue exploring this line of research by extending the class of compactified 6d theories to the D-type case. The simplest such 6d theory arises from D5 branes probing D-type singularities. Equivalently, this theory can be obtained from an F-theory compactification using -2-curves intersecting according to a D-type quiver. Our approach is two-fold. We start by compactifying the 6d SCFT on a Riemann surface and compute the central charges of the resulting 4d theory by integrating the 6d anomaly polynomial over the Riemann surface. As a second step, in order to find candidate 4d UV Lagrangians, there is an intermediate 5d theory that serves to construct 4d domain walls. These can be used as building blocks to obtain torus compactifications. In contrast to the A-type case, the vanishing of anomalies in the 4d theory turns out to be very restrictive and constraints the choices of gauge nodes and matter content severely. As a consequence, in this paper one has to resort to non-maximal boundary conditions for the 4d domain walls. However, the comparison to the 6d theory compactified on the Riemann surface becomes less tractable.
We study twisted circle compactification of 6d $(2,0)$ SCFTs to 5d $mathcal{N} = 2$ supersymmetric gauge theories with non-simply-laced gauge groups. We provide two complementary approaches towards the BPS partition functions, reflecting the 5d and 6d point of view respectively. The first is based on the blowup equations for the instanton partition function, from which in particular we determine explicitly the one-instanton contribution for all simple Lie groups. The second is based on the modular bootstrap program, and we propose a novel modular ansatz for the twisted elliptic genera that transform under the congruence subgroups $Gamma_0(N)$ of $text{SL}(2,mathbb{Z})$. We conjecture a vanishing bound for the refined Gopakumar-Vafa invariants of the genus one fibered Calabi-Yau threefolds, upon which one can determine the twisted elliptic genera recursively. We use our results to obtain the 6d Cardy formulas and find universal behaviour for all simple Lie groups. In addition, the Cardy formulas remain invariant under the twist once the normalization of the compact circle is taken into account.
We propose new five-dimensional gauge theory descriptions of six-dimensional $mathcal{N}=(1,0)$ superconformal field theories arising from type IIA brane configurations including an $ON^0$-plane. The new five-dimensional gauge theories may have $SO$, $Sp$, and $SU$ gauge groups and further broaden the landscape of ultraviolet complete five-dimensional $mathcal{N}=1$ supersymmetric gauge theories. When we include an $O8^-$-plane in addition to an $ON^0$-plane, T-duality yields two $O7^-$-planes at the intersections of an $ON^0$-plane and two $O5^0$-planes. We propose a novel resolution of the $O7^-$-plane with four D7-branes in such a configuration, which enables us to obtain three different types of five-dimensional gauge theories, depending on whether we resolve either none or one or two $O7^-$-planes. Such different possibilities yield a new five-dimensional duality between a D-type $SU$ quiver and an $SO-Sp$ quiver theories. We also claim that a twisted circle compactification of a six-dimensional superconformal field theory may lead to a five-dimensional gauge theory different from those obtained by a simple circle compactification.
We study the recently proposed AdS$_7$/CFT$_6$ dualities for a class of 6d $mathcal{N} = (1,0)$ theories that flow on the tensor branch to long linear quiver gauge theories. We find a precise agreement in the symmetries and in the spectrum of charged states between the 6d SCFTs and their conjectured AdS$_7$ duals. We also confirm a recent conjecture that a discrete $S_N$ symmetry relating the baryons in the quiver theories is in fact gauged.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا