Do you want to publish a course? Click here

4d N=1 from 6d D-type N=(1,0)

103   0   0.0 ( 0 )
 Added by Marcus Sperling
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Compactifications of 6d N=(1,0) SCFTs give rise to new 4d N=1 SCFTs and shed light on interesting dualities between such theories. In this paper we continue exploring this line of research by extending the class of compactified 6d theories to the D-type case. The simplest such 6d theory arises from D5 branes probing D-type singularities. Equivalently, this theory can be obtained from an F-theory compactification using -2-curves intersecting according to a D-type quiver. Our approach is two-fold. We start by compactifying the 6d SCFT on a Riemann surface and compute the central charges of the resulting 4d theory by integrating the 6d anomaly polynomial over the Riemann surface. As a second step, in order to find candidate 4d UV Lagrangians, there is an intermediate 5d theory that serves to construct 4d domain walls. These can be used as building blocks to obtain torus compactifications. In contrast to the A-type case, the vanishing of anomalies in the 4d theory turns out to be very restrictive and constraints the choices of gauge nodes and matter content severely. As a consequence, in this paper one has to resort to non-maximal boundary conditions for the 4d domain walls. However, the comparison to the 6d theory compactified on the Riemann surface becomes less tractable.



rate research

Read More

In this work we study type IIB Calabi-Yau orientifold compactifications in the presence of space-time filling D7-branes and O7-planes. In particular, we conclude that $alpha^2 g_s$-corrections to their DBI actions lead to a modification of the four-dimensional $mathcal{N}=1$ Kahler potential and coordinates. We focus on the one-modulus case of the geometric background i.e. $h^{1,1}=1$ where we find that the $alpha^2 g_s$-correction is of topological nature. It depends on the first Chern form of the four-cycle of the Calabi-Yau orientifold which is wrapped by the D7-branes and O7-plane. This is in agreement with our previous F-theory analysis and provides further evidence for a potential breaking of the no-scale structure at order $alpha^2 g_s$. Corrected background solutions for the dilaton, the warp-factor as well as the internal space metric are derived. Additionally, we briefly discuss $alpha$-corrections from other D$p$-branes.
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $(1,0)$ SCFT compactified on a torus, which we check by identifying and comparing the central charges and the flavor symmetry. Each 6d theory is identified with a complex structure deformation of $(mathfrak{e}_n,mathfrak{e}_n)$ minimal conformal matter, which corresponds to a Higgs branch renormalization group flow. We find that this structure is precisely replicated by the partial closure of the punctures in the class $mathcal{S}$ construction. We explain how the plurality of origins makes manifest some aspects of 4d SCFTs, including flavor symmetry enhancements and determining if it is a product SCFT. We further highlight the string theoretic basis for this identification of 4d theories from different origins via mirror symmetry.
129 - A. De Castro , L. Quevedo 2006
In this paper we construct N=(1,0) and N=(1,1/2) non-singlet Q-deformed supersymmetric U(1) actions in components. We obtain an exact expression for the enhanced supersymmetry action by turning off particular degrees of freedom of the deformation tensor. We analyze the behavior of the action upon restoring weekly some of the deformation parameters, obtaining a non trivial interaction term between a scalar and the gauge field, breaking the supersymmetry down to N=(1,0). Additionally, we present the corresponding set of unbroken supersymmetry transformations. We work in harmonic superspace in four Euclidean dimensions.
We continue the development of a theory of off-shell supersymmetric representations analogous to that of compact Lie algebras such as SU(3). For off-shell 4D, N = 1 systems, quark-like representations have been identified [1] in terms of cis-Adinkras and trans-Adinkras and it has been conjectured that arbitrary representations are composites of $n_c$-cis and $n_t$-trans representations. Analyzing the real scalar and complex linear superfield multiplets, these chemical enantiomer numbers are found to be $n_c$ = $n_t$ = 1 and $n_c$ = 1, $n_t$ = 2, respectively.
Adinkras are graphs that encode a supersymmetric representations transformation laws that have been reduced to one dimension, that of time. A goal of the supersymmetry ``genomics project is to classify all 4D, $mathcal{N}=1$ off-shell supermultiplets in terms of their adinkras. In~previous works, the genomics project uncovered two fundamental isomer adinkras, the cis- and trans-adinkras, into which all multiplets investigated to date can be decomposed. The number of cis- and trans-adinkras describing a given multiplet define the isomer-equivalence class to which the multiplet belongs. A further refining classification is that of a supersymmetric multiplets holoraumy: the commutator of the supercharges acting on the representation. The one-dimensionally reduced, matrix representation of a multiplets holoraumy defines the multiplets holoraumy-equivalence class. Together, a multiplets isomer-equivalence and holoraumy-equivalence classes are two of the main characteristics used to distinguish the adinkras associated with different supersymmetry multiplets in higher dimensions. This paper focuses on two matter gravitino formulations, each with 20 bosonic and 20 fermionic off-shell degrees of freedom, analyzes them in terms of their isomer- and holoraumy-equivalence classes, and compares with non-minimal supergravity which is also a 20x20 multiplet. This analysis fills a missing piece in the supersymmetry genomics project, as now the isomer-equivalence and holoraumy-equivalence for representations up to spin two in component fields have been analyzed for 4D, $mathcal{N}=1$ supersymmetry. To handle the calculations of this research effort, we have used the Mathematica software package called Adinkra.m. This package is open-source and available for download at a GitHub Repository. Data files associated with this paper are also published open-source at a Data Repository also on GitHub.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا