Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs which are also generalized quivers. Taking products of bifundamental conformal matter operators, we present evidence that there are large R-charge sectors of the theory in which operator mixing is captured by a 1D spin chain Hamiltonian with operator scaling dimensions controlled by a perturbation series in inverse powers of the R-charge. We regulate the inherent divergences present in the 6D computations with the associated 5D Kaluza--Klein theory. In the case of 6D SCFTs obtained from M5-branes probing a $mathbb{C}^{2}/mathbb{Z}_{K}$ singularity, we show that there is a class of operators where the leading order mixing effects are captured by the integrable Heisenberg $XXX_{s=1/2}$ spin chain with open boundary conditions, and similar considerations hold for its $T^2$ reduction to a 4D $mathcal{N}=2$ SCFT. In the case of M5-branes probing more general D- and E-type singularities where generalized quivers have conformal matter, we argue that similar mixing effects are captured by an integrable $XXX_{s}$ spin chain with $s>1/2$. We also briefly discuss some generalizations to other operator sectors as well as little string theories.
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mixing. These operators are characterized by degrees of freedom in a one-dimensional spin chain, and the associated states are generically highly entangled. This provides a concrete realization of qubit-like states in a strongly coupled quantum field theory. Renormalization group flows triggered by deformations of 6D UV fixed points translate to specific deformations of these one-dimensional spin chains. We also present a conjectural spin chain Hamiltonian which tracks the evolution of these states as a function of renormalization group flow, and study qubit manipulation in this setting. Similar considerations hold for theories without $AdS$ duals, such as 6D little string theories and 4D SCFTs obtained from compactification of the partial tensor branch theory on a $T^2$.
We consider all 4d $mathcal{N}=2$ theories of class $mathcal{S}$ arising from the compactification of exceptional 6d $(2,0)$ SCFTs on a three-punctured sphere with a simple puncture. We find that each of these 4d theories has another origin as a 6d $(1,0)$ SCFT compactified on a torus, which we check by identifying and comparing the central charges and the flavor symmetry. Each 6d theory is identified with a complex structure deformation of $(mathfrak{e}_n,mathfrak{e}_n)$ minimal conformal matter, which corresponds to a Higgs branch renormalization group flow. We find that this structure is precisely replicated by the partial closure of the punctures in the class $mathcal{S}$ construction. We explain how the plurality of origins makes manifest some aspects of 4d SCFTs, including flavor symmetry enhancements and determining if it is a product SCFT. We further highlight the string theoretic basis for this identification of 4d theories from different origins via mirror symmetry.
We use holographic renormalization of minimal $mathcal{N}=2$ gauged supergravity in order to derive the general form of the quantum Ward identities for 3d $mathcal{N}=2$ and 4d $mathcal{N}=1$ superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d $mathcal{N}=1$ theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the $a$ and $c$ anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. We show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all superconformal anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the $Q$-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the $Q$-exactness of the stress tensor, together with the Ward identities, in order to determine the general form of the stress tensor and $R$-current one-point functions in supersymmetric vacua, which allows us to obtain general expressions for the supersymmetric Casimir charges and partition function.
Recent work on 6D superconformal field theories (SCFTs) has established an intricate correspondence between certain Higgs branch deformations and nilpotent orbits of flavor symmetry algebras associated with T-branes. In this paper, we return to the stringy origin of these theories and show that many aspects of these deformations can be understood in terms of simple combinatorial data associated with multi-pronged strings stretched between stacks of intersecting 7-branes in F-theory. This data lets us determine the full structure of the nilpotent cone for each semi-simple flavor symmetry algebra, and it further allows us to characterize symmetry breaking patterns in quiver-like theories with classical gauge groups. An especially helpful feature of this analysis is that it extends to short quivers in which the breaking patterns from different flavor symmetry factors are correlated.
We establish the elliptic blowup equations for E-strings and M-strings and solve elliptic genera and refined BPS invariants from them. Such elliptic blowup equations can be derived from a path integral interpretation. We provide toric hypersurface construction for the Calabi-Yau geometries of M-strings and those of E-strings with up to three mass parameters turned on, as well as an approach to derive the perturbative prepotential directly from the local description of the Calabi-Yau threefolds. We also demonstrate how to systematically obtain blowup equations for all rank one 5d SCFTs from E-string by blow-down operations. Finally, we present blowup equations for E-M and M string chains.