Do you want to publish a course? Click here

On Task-Level Dialogue Composition of Generative Transformer Model

110   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Task-oriented dialogue systems help users accomplish tasks such as booking a movie ticket and ordering food via conversation. Generative models parameterized by a deep neural network are widely used for next turn response generation in such systems. It is natural for users of the system to want to accomplish multiple tasks within the same conversation, but the ability of generative models to compose multiple tasks is not well studied. In this work, we begin by studying the effect of training human-human task-oriented dialogues towards improving the ability to compose multiple tasks on Transformer generative models. To that end, we propose and explore two solutions: (1) creating synthetic multiple task dialogue data for training from human-human single task dialogue and (2) forcing the encoder representation to be invariant to single and multiple task dialogues using an auxiliary loss. The results from our experiments highlight the difficulty of even the sophisticated variant of transformer model in learning to compose multiple tasks from single task dialogues.

rate research

Read More

Dialogue management (DM) decides the next action of a dialogue system according to the current dialogue state, and thus plays a central role in task-oriented dialogue systems. Since dialogue management requires to have access to not only local utterances, but also the global semantics of the entire dialogue session, modeling the long-range history information is a critical issue. To this end, we propose a novel Memory-Augmented Dialogue management model (MAD) which employs a memory controller and two additional memory structures, i.e., a slot-value memory and an external memory. The slot-value memory tracks the dialogue state by memorizing and updating the values of semantic slots (for instance, cuisine, price, and location), and the external memory augments the representation of hidden states of traditional recurrent neural networks through storing more context information. To update the dialogue state efficiently, we also propose slot-level attention on user utterances to extract specific semantic information for each slot. Experiments show that our model can obtain state-of-the-art performance and outperforms existing baselines.
Continual learning in task-oriented dialogue systems can allow us to add new domains and functionalities through time without incurring the high cost of a whole system retraining. In this paper, we propose a continual learning benchmark for task-oriented dialogue systems with 37 domains to be learned continuously in four settings, such as intent recognition, state tracking, natural language generation, and end-to-end. Moreover, we implement and compare multiple existing continual learning baselines, and we propose a simple yet effective architectural method based on residual adapters. Our experiments demonstrate that the proposed architectural method and a simple replay-based strategy perform comparably well but they both achieve inferior performance to the multi-task learning baseline, in where all the data are shown at once, showing that continual learning in task-oriented dialogue systems is a challenging task. Furthermore, we reveal several trade-offs between different continual learning methods in term of parameter usage and memory size, which are important in the design of a task-oriented dialogue system. The proposed benchmark is released together with several baselines to promote more research in this direction.
Conventional approaches to personalized dialogue generation typically require a large corpus, as well as predefined persona information. However, in a real-world setting, neither a large corpus of training data nor persona information are readily available. To address these practical limitations, we propose a novel multi-task meta-learning approach which involves training a model to adapt to new personas without relying on a large corpus, or on any predefined persona information. Instead, the model is tasked with generating personalized responses based on only the dialogue context. Unlike prior work, our approach leverages on the provided persona information only during training via the introduction of an auxiliary persona reconstruction task. In this paper, we introduce 2 frameworks that adopt the proposed multi-task meta-learning approach: the Multi-Task Meta-Learning (MTML) framework, and the Alternating Multi-Task Meta-Learning (AMTML) framework. Experimental results show that utilizing MTML and AMTML results in dialogue responses with greater persona consistency.
In this paper, we propose to formulate the task-oriented dialogue system as the purely natural language generation task, so as to fully leverage the large-scale pre-trained models like GPT-2 and simplify complicated delexicalization prepossessing. However, directly applying this method heavily suffers from the dialogue entity inconsistency caused by the removal of delexicalized tokens, as well as the catastrophic forgetting problem of the pre-trained model during fine-tuning, leading to unsatisfactory performance. To alleviate these problems, we design a novel GPT-Adapter-CopyNet network, which incorporates the lightweight adapter and CopyNet modules into GPT-2 to achieve better performance on transfer learning and dialogue entity generation. Experimental results conducted on the DSTC8 Track 1 benchmark and MultiWOZ dataset demonstrate that our proposed approach significantly outperforms baseline models with a remarkable performance on automatic and human evaluations.
Predicting the next utterance in dialogue is contingent on encoding of users input text to generate appropriate and relevant response in data-driven approaches. Although the semantic and syntactic quality of the language generated is evaluated, more often than not, the encoded representation of input is not evaluated. As the representation of the encoder is essential for predicting the appropriate response, evaluation of encoder representation is a challenging yet important problem. In this work, we showcase evaluating the text generated through human or automatic metrics is not sufficient to appropriately evaluate soundness of the language understanding of dialogue models and, to that end, propose a set of probe tasks to evaluate encoder representation of different language encoders commonly used in dialogue models. From experiments, we observe that some of the probe tasks are easier and some are harder for even sophisticated model architectures to learn. And, through experiments we observe that RNN based architectures have lower performance on automatic metrics on text generation than transformer model but perform better than the transformer model on the probe tasks indicating that RNNs might preserve task information better than the Transformers.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا