Do you want to publish a course? Click here

Implicit Finite-Horizon Approximation and Efficient Optimal Algorithms for Stochastic Shortest Path

192   0   0.0 ( 0 )
 Added by Liyu Chen
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce a generic template for developing regret minimization algorithms in the Stochastic Shortest Path (SSP) model, which achieves minimax optimal regret as long as certain properties are ensured. The key of our analysis is a new technique called implicit finite-horizon approximation, which approximates the SSP model by a finite-horizon counterpart only in the analysis without explicit implementation. Using this template, we develop two new algorithms: the first one is model-free (the first in the literature to our knowledge) and minimax optimal under strictly positive costs; the second one is model-based and minimax optimal even with zero-cost state-action pairs, matching the best existing result from [Tarbouriech et al., 2021b]. Importantly, both algorithms admit highly sparse updates, making them computationally more efficient than all existing algorithms. Moreover, both can be made completely parameter-free.

rate research

Read More

Computing shortest path distances between nodes lies at the heart of many graph algorithms and applications. Traditional exact methods such as breadth-first-search (BFS) do not scale up to contemporary, rapidly evolving todays massive networks. Therefore, it is required to find approximation methods to enable scalable graph processing with a significant speedup. In this paper, we utilize vector embeddings learnt by deep learning techniques to approximate the shortest paths distances in large graphs. We show that a feedforward neural network fed with embeddings can approximate distances with relatively low distortion error. The suggested method is evaluated on the Facebook, BlogCatalog, Youtube and Flickr social networks.
Restless Multi-Armed Bandits (RMABs) have been popularly used to model limited resource allocation problems. Recently, these have been employed for health monitoring and intervention planning problems. However, the existing approaches fail to account for the arrival of new patients and the departure of enrolled patients from a treatment program. To address this challenge, we formulate a streaming bandit (S-RMAB) framework, a generalization of RMABs where heterogeneous arms arrive and leave under possibly random streams. We propose a new and scalable approach to computing index-based solutions. We start by proving that index values decrease for short residual lifetimes, a phenomenon that we call index decay. We then provide algorithms designed to capture index decay without having to solve the costly finite horizon problem, thereby lowering the computational complexity compared to existing methods.We evaluate our approach via simulations run on real-world data obtained from a tuberculosis intervention planning task as well as multiple other synthetic domains. Our algorithms achieve an over 150x speed-up over existing methods in these tasks without loss in performance. These findings are robust across multiple domains.
We investigate the problem of online learning, which has gained significant attention in recent years due to its applicability in a wide range of fields from machine learning to game theory. Specifically, we study the online optimization of mixable loss functions in a dynamic environment. We introduce online mixture schemes that asymptotically achieves the performance of the best dynamic estimation sequence of the switching oracle with optimal regret redundancies. The best dynamic estimation sequence that we compete against is selected in hindsight with full observation of the loss functions and is allowed to select different optimal estimations in different time intervals (segments). We propose two mixtures in our work. Firstly, we propose a tractable polynomial time complexity algorithm that can achieve the optimal redundancy of the intractable brute force approach. Secondly, we propose an efficient logarithmic time complexity algorithm that can achieve the optimal redundancy up to a constant multiplicity gap. Our results are guaranteed to hold in a strong deterministic sense in an individual sequence manner.
We consider the problem of online reinforcement learning for the Stochastic Shortest Path (SSP) problem modeled as an unknown MDP with an absorbing state. We propose PSRL-SSP, a simple posterior sampling-based reinforcement learning algorithm for the SSP problem. The algorithm operates in epochs. At the beginning of each epoch, a sample is drawn from the posterior distribution on the unknown model dynamics, and the optimal policy with respect to the drawn sample is followed during that epoch. An epoch completes if either the number of visits to the goal state in the current epoch exceeds that of the previous epoch, or the number of visits to any of the state-action pairs is doubled. We establish a Bayesian regret bound of $O(B_star Ssqrt{AK})$, where $B_star$ is an upper bound on the expected cost of the optimal policy, $S$ is the size of the state space, $A$ is the size of the action space, and $K$ is the number of episodes. The algorithm only requires the knowledge of the prior distribution, and has no hyper-parameters to tune. It is the first such posterior sampling algorithm and outperforms numerically previously proposed optimism-based algorithms.
We propose novel first-order stochastic approximation algorithms for canonical correlation analysis (CCA). Algorithms presented are instances of inexact matrix stochastic gradient (MSG) and inexact matrix exponentiated gradient (MEG), and achieve $epsilon$-suboptimality in the population objective in $operatorname{poly}(frac{1}{epsilon})$ iterations. We also consider practical variants of the proposed algorithms and compare them with other methods for CCA both theoretically and empirically.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا