Do you want to publish a course? Click here

Efficient Algorithms for Finite Horizon and Streaming Restless Multi-Armed Bandit Problems

115   0   0.0 ( 0 )
 Added by Aditya Mate
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Restless Multi-Armed Bandits (RMABs) have been popularly used to model limited resource allocation problems. Recently, these have been employed for health monitoring and intervention planning problems. However, the existing approaches fail to account for the arrival of new patients and the departure of enrolled patients from a treatment program. To address this challenge, we formulate a streaming bandit (S-RMAB) framework, a generalization of RMABs where heterogeneous arms arrive and leave under possibly random streams. We propose a new and scalable approach to computing index-based solutions. We start by proving that index values decrease for short residual lifetimes, a phenomenon that we call index decay. We then provide algorithms designed to capture index decay without having to solve the costly finite horizon problem, thereby lowering the computational complexity compared to existing methods.We evaluate our approach via simulations run on real-world data obtained from a tuberculosis intervention planning task as well as multiple other synthetic domains. Our algorithms achieve an over 150x speed-up over existing methods in these tasks without loss in performance. These findings are robust across multiple domains.



rate research

Read More

The restless bandit problem is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. In its ultimate generality, the restless bandit problem is known to be PSPACE-Hard to approximate to any non-trivial factor, and little progress has been made despite its importance in modeling activity allocation under uncertainty. We consider a special case that we call Feedback MAB, where the reward obtained by playing each of n independent arms varies according to an underlying on/off Markov process whose exact state is only revealed when the arm is played. The goal is to design a policy for playing the arms in order to maximize the infinite horizon time average expected reward. This problem is also an instance of a Partially Observable Markov Decision Process (POMDP), and is widely studied in wireless scheduling and unmanned aerial vehicle (UAV) routing. Unlike the stochastic MAB problem, the Feedback MAB problem does not admit to greedy index-based optimal policies. We develop a novel and general duality-based algorithmic technique that yields a surprisingly simple and intuitive 2+epsilon-approximate greedy policy to this problem. We then define a general sub-class of restless bandit problems that we term Monotone bandits, for which our policy is a 2-approximation. Our technique is robust enough to handle generalizations of these problems to incorporate various side-constraints such as blocking plays and switching costs. This technique is also of independent interest for other restless bandit problems. By presenting the first (and efficient) O(1) approximations for non-trivial instances of restless bandits as well as of POMDPs, our work initiates the study of approximation algorithms in both these contexts.
In this paper, we consider several finite-horizon Bayesian multi-armed bandit problems with side constraints which are computationally intractable (NP-Hard) and for which no optimal (or near optimal) algorithms are known to exist with sub-exponential running time. All of these problems violate the standard exchange property, which assumes that the reward from the play of an arm is not contingent upon when the arm is played. Not only are index policies suboptimal in these contexts, there has been little analysis of such policies in these problem settings. We show that if we consider near-optimal policies, in the sense of approximation algorithms, then there exists (near) index policies. Conceptually, if we can find policies that satisfy an approximate version of the exchange property, namely, that the reward from the play of an arm depends on when the arm is played to within a constant factor, then we have an avenue towards solving these problems. However such an approximate version of the idling bandit property does not hold on a per-play basis and are shown to hold in a global sense. Clearly, such a property is not necessarily true of arbitrary single arm policies and finding such single arm policies is nontrivial. We show that by restricting the state spaces of arms we can find single arm policies and that these single arm policies can be combined into global (near) index policies where the approximate version of the exchange property is true in expectation. The number of different bandit problems that can be addressed by this technique already demonstrate its wide applicability.
We consider the framework of stochastic multi-armed bandit problems and study the possibilities and limitations of forecasters that perform an on-line exploration of the arms. These forecasters are assessed in terms of their simple regret, a regret notion that captures the fact that exploration is only constrained by the number of available rounds (not necessarily known in advance), in contrast to the case when the cumulative regret is considered and when exploitation needs to be performed at the same time. We believe that this performance criterion is suited to situations when the cost of pulling an arm is expressed in terms of resources rather than rewards. We discuss the links between the simple and the cumulative regret. One of the main results in the case of a finite number of arms is a general lower bound on the simple regret of a forecaster in terms of its cumulative regret: the smaller the latter, the larger the former. Keeping this result in mind, we then exhibit upper bounds on the simple regret of some forecasters. The paper ends with a study devoted to continuous-armed bandit problems; we show that the simple regret can be minimized with respect to a family of probability distributions if and only if the cumulative regret can be minimized for it. Based on this equivalence, we are able to prove that the separable metric spaces are exactly the metric spaces on which these regrets can be minimized with respect to the family of all probability distributions with continuous mean-payoff functions.
This paper proposes using the uncertainty of information (UoI), measured by Shannons entropy, as a metric for information freshness. We consider a system in which a central monitor observes multiple binary Markov processes through a communication channel. The UoI of a Markov process corresponds to the monitors uncertainty about its state. At each time step, only one Markov process can be selected to update its state to the monitor; hence there is a tradeoff among the UoIs of the processes that depend on the scheduling policy used to select the process to be updated. The age of information (AoI) of a process corresponds to the time since its last update. In general, the associated UoI can be a non-increasing function, or even an oscillating function, of its AoI, making the scheduling problem particularly challenging. This paper investigates scheduling policies that aim to minimize the average sum-UoI of the processes over the infinite time horizon. We formulate the problem as a restless multi-armed bandit (RMAB) problem, and develop a Whittle index policy that is near-optimal for the RMAB after proving its indexability. We further provide an iterative algorithm to compute the Whittle index for the practical deployment of the policy. Although this paper focuses on UoI scheduling, our results apply to a general class of RMABs for which the UoI scheduling problem is a special case. Specifically, this papers Whittle index policy is valid for any RMAB in which the bandits are binary Markov processes and the penalty is a concave function of the belief state of the Markov process. Numerical results demonstrate the excellent performance of the Whittle index policy for this class of RMABs.
This paper explores multi-armed bandit (MAB) strategies in very short horizon scenarios, i.e., when the bandit strategy is only allowed very few interactions with the environment. This is an understudied setting in the MAB literature with many applications in the context of games, such as player modeling. Specifically, we pursue three different ideas. First, we explore the use of regression oracles, which replace the simple average used in strategies such as epsilon-greedy with linear regression models. Second, we examine different exploration patterns such as forced exploration phases. Finally, we introduce a new variant of the UCB1 strategy called UCBT that has interesting properties and no tunable parameters. We present experimental results in a domain motivated by exergames, where the goal is to maximize a players daily steps. Our results show that the combination of epsilon-greedy or epsilon-decreasing with regression oracles outperforms all other tested strategies in the short horizon setting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا