No Arabic abstract
Humans are arguably one of the most important subjects in video streams, many real-world applications such as video summarization or video editing workflows often require the automatic search and retrieval of a person of interest. Despite tremendous efforts in the person reidentification and retrieval domains, few works have developed audiovisual search strategies. In this paper, we present the Audiovisual Person Search dataset (APES), a new dataset composed of untrimmed videos whose audio (voices) and visual (faces) streams are densely annotated. APES contains over 1.9K identities labeled along 36 hours of video, making it the largest dataset available for untrimmed audiovisual person search. A key property of APES is that it includes dense temporal annotations that link faces to speech segments of the same identity. To showcase the potential of our new dataset, we propose an audiovisual baseline and benchmark for person retrieval. Our study shows that modeling audiovisual cues benefits the recognition of peoples identities. To enable reproducibility and promote future research, the dataset annotations and baseline code are available at: https://github.com/fuankarion/audiovisual-person-search
Audio and vision are two main modalities in video data. Multimodal learning, especially for audiovisual learning, has drawn considerable attention recently, which can boost the performance of various computer vision tasks. However, in video summarization, existing approaches just exploit the visual information while neglect the audio information. In this paper, we argue that the audio modality can assist vision modality to better understand the video content and structure, and further benefit the summarization process. Motivated by this, we propose to jointly exploit the audio and visual information for the video summarization task, and develop an AudioVisual Recurrent Network (AVRN) to achieve this. Specifically, the proposed AVRN can be separated into three parts: 1) the two-stream LSTM is utilized to encode the audio and visual feature sequentially by capturing their temporal dependency. 2) the audiovisual fusion LSTM is employed to fuse the two modalities by exploring the latent consistency between them. 3) the self-attention video encoder is adopted to capture the global dependency in the video. Finally, the fused audiovisual information, and the integrated temporal and global dependencies are jointly used to predict the video summary. Practically, the experimental results on the two benchmarks, emph{i.e.,} SumMe and TVsum, have demonstrated the effectiveness of each part, and the superiority of AVRN compared to those approaches just exploiting visual information for video summarization.
Deep learning has achieved great success in recognizing video actions, but the collection and annotation of training data are still quite laborious, which mainly lies in two aspects: (1) the amount of required annotated data is large; (2) temporally annotating the location of each action is time-consuming. Works such as few-shot learning or untrimmed video recognition have been proposed to handle either one aspect or the other. However, very few existing works can handle both issues simultaneously. In this paper, we target a new problem, Annotation-Efficient Video Recognition, to reduce the requirement of annotations for both large amount of samples and the action location. Such problem is challenging due to two aspects: (1) the untrimmed videos only have weak supervision; (2) video segments not relevant to current actions of interests (background, BG) could contain actions of interests (foreground, FG) in novel classes, which is a widely existing phenomenon but has rarely been studied in few-shot untrimmed video recognition. To achieve this goal, by analyzing the property of BG, we categorize BG into informative BG (IBG) and non-informative BG (NBG), and we propose (1) an open-set detection based method to find the NBG and FG, (2) a contrastive learning method to learn IBG and distinguish NBG in a self-supervised way, and (3) a self-weighting mechanism for the better distinguishing of IBG and FG. Extensive experiments on ActivityNet v1.2 and ActivityNet v1.3 verify the rationale and effectiveness of the proposed methods.
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage detectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a re-id first principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
Video person re-identification (re-ID) plays an important role in surveillance video analysis. However, the performance of video re-ID degenerates severely under partial occlusion. In this paper, we propose a novel network, called Spatio-Temporal Completion network (STCnet), to explicitly handle partial occlusion problem. Different from most previous works that discard the occluded frames, STCnet can recover the appearance of the occluded parts. For one thing, the spatial structure of a pedestrian frame can be used to predict the occluded body parts from the unoccluded body parts of this frame. For another, the temporal patterns of pedestrian sequence provide important clues to generate the contents of occluded parts. With the Spatio-temporal information, STCnet can recover the appearance for the occluded parts, which could be leveraged with those unoccluded parts for more accurate video re-ID. By combining a re-ID network with STCnet, a video re-ID framework robust to partial occlusion (VRSTC) is proposed. Experiments on three challenging video re-ID databases demonstrate that the proposed approach outperforms the state-of-the-art.
Most existing person re-identification (re-id) models focus on matching still person images across disjoint camera views. Since only limited information can be exploited from still images, it is hard (if not impossible) to overcome the occlusion, pose and camera-view change, and lighting variation problems. In comparison, video-based re-id methods can utilize extra space-time information, which contains much more rich cues for matching to overcome the mentioned problems. However, we find that when using video-based representation, some inter-class difference can be much more obscure than the one when using still-image based representation, because different people could not only have similar appearance but also have similar motions and actions which are hard to align. To solve this problem, we propose a top-push distance learning model (TDL), in which we integrate a top-push constrain for matching video features of persons. The top-push constraint enforces the optimization on top-rank matching in re-id, so as to make the matching model more effective towards selecting more discriminative features to distinguish different persons. Our experiments show that the proposed video-based re-id framework outperforms the state-of-the-art video-based re-id methods.