Do you want to publish a course? Click here

Top-push Video-based Person Re-identification

256   0   0.0 ( 0 )
 Added by Jinjie You
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Most existing person re-identification (re-id) models focus on matching still person images across disjoint camera views. Since only limited information can be exploited from still images, it is hard (if not impossible) to overcome the occlusion, pose and camera-view change, and lighting variation problems. In comparison, video-based re-id methods can utilize extra space-time information, which contains much more rich cues for matching to overcome the mentioned problems. However, we find that when using video-based representation, some inter-class difference can be much more obscure than the one when using still-image based representation, because different people could not only have similar appearance but also have similar motions and actions which are hard to align. To solve this problem, we propose a top-push distance learning model (TDL), in which we integrate a top-push constrain for matching video features of persons. The top-push constraint enforces the optimization on top-rank matching in re-id, so as to make the matching model more effective towards selecting more discriminative features to distinguish different persons. Our experiments show that the proposed video-based re-id framework outperforms the state-of-the-art video-based re-id methods.



rate research

Read More

Recently, the Transformer module has been transplanted from natural language processing to computer vision. This paper applies the Transformer to video-based person re-identification, where the key issue is to extract the discriminative information from a tracklet. We show that, despite the strong learning ability, the vanilla Transformer suffers from an increased risk of over-fitting, arguably due to a large number of attention parameters and insufficient training data. To solve this problem, we propose a novel pipeline where the model is pre-trained on a set of synthesized video data and then transferred to the downstream domains with the perception-constrained Spatiotemporal Transformer (STT) module and Global Transformer (GT) module. The derived algorithm achieves significant accuracy gain on three popular video-based person re-identification benchmarks, MARS, DukeMTMC-VideoReID, and LS-VID, especially when the training and testing data are from different domains. More importantly, our research sheds light on the application of the Transformer on highly-structured visual data.
It is prohibitively expensive to annotate a large-scale video-based person re-identification (re-ID) dataset, which makes fully supervised methods inapplicable to real-world deployment. How to maximally reduce the annotation cost while retaining the re-ID performance becomes an interesting problem. In this paper, we address this problem by integrating an active learning scheme into a deep learning framework. Noticing that the truly matched tracklet-pairs, also denoted as true positives (TP), are the most informative samples for our re-ID model, we propose a sampling criterion to choose the most TP-likely tracklet-pairs for annotation. A view-aware sampling strategy considering view-specific biases is designed to facilitate candidate selection, followed by an adaptive resampling step to leave out the selected candidates that are unnecessary to annotate. Our method learns the re-ID model and updates the annotation set iteratively. The re-ID model is supervised by the tracklets pesudo labels that are initialized by treating each tracklet as a distinct class. With the gained annotations of the actively selected candidates, the tracklets pesudo labels are updated by label merging and further used to re-train our re-ID model. While being simple, the proposed method demonstrates its effectiveness on three video-based person re-ID datasets. Experimental results show that less than 3% pairwise annotations are needed for our method to reach comparable performance with the fully-supervised setting.
Video-based person re-identification (Re-ID) aims at matching the video tracklets with cropped video frames for identifying the pedestrians under different cameras. However, there exists severe spatial and temporal misalignment for those cropped tracklets due to the imperfect detection and tracking results generated with obsolete methods. To address this issue, we present a simple re-Detect and Link (DL) module which can effectively reduce those unexpected noise through applying the deep learning-based detection and tracking on the cropped tracklets. Furthermore, we introduce an improved model called Coarse-to-Fine Axial-Attention Network (CF-AAN). Based on the typical Non-local Network, we replace the non-local module with three 1-D position-sensitive axial attentions, in addition to our proposed coarse-to-fine structure. With the developed CF-AAN, compared to the original non-local operation, we can not only significantly reduce the computation cost but also obtain the state-of-the-art performance (91.3% in rank-1 and 86.5% in mAP) on the large-scale MARS dataset. Meanwhile, by simply adopting our DL module for data alignment, to our surprise, several baseline models can achieve better or comparable results with the current state-of-the-arts. Besides, we discover the errors not only for the identity labels of tracklets but also for the evaluation protocol for the test data of MARS. We hope that our work can help the community for the further development of invariant representation without the hassle of the spatial and temporal alignment and dataset noise. The code, corrected labels, evaluation protocol, and the aligned data will be available at https://github.com/jackie840129/CF-AAN.
We consider the problem of video-based person re-identification. The goal is to identify a person from videos captured under different cameras. In this paper, we propose an efficient spatial-temporal attention based model for person re-identification from videos. Our method generates an attention score for each frame based on frame-level features. The attention scores of all frames in a video are used to produce a weighted feature vector for the input video. Unlike most existing deep learning methods that use global representation, our approach focuses on attention scores. Extensive experiments on two benchmark datasets demonstrate that our method achieves the state-of-the-art performance. This is a technical report.
Video-based person re-identification (re-ID) is an important research topic in computer vision. The key to tackling the challenging task is to exploit both spatial and temporal clues in video sequences. In this work, we propose a novel graph-based framework, namely Multi-Granular Hypergraph (MGH), to pursue better representational capabilities by modeling spatiotemporal dependencies in terms of multiple granularities. Specifically, hypergraphs with different spatial granularities are constructed using various levels of part-based features across the video sequence. In each hypergraph, different temporal granularities are captured by hyperedges that connect a set of graph nodes (i.e., part-based features) across different temporal ranges. Two critical issues (misalignment and occlusion) are explicitly addressed by the proposed hypergraph propagation and feature aggregation schemes. Finally, we further enhance the overall video representation by learning more diversified graph-level representations of multiple granularities based on mutual information minimization. Extensive experiments on three widely adopted benchmarks clearly demonstrate the effectiveness of the proposed framework. Notably, 90.0% top-1 accuracy on MARS is achieved using MGH, outperforming the state-of-the-arts. Code is available at https://github.com/daodaofr/hypergraph_reid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا