No Arabic abstract
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images, which can be regarded as the unified task of pedestrian detection and person re-identification (re-id). Most existing works employ two-stage detectors like Faster-RCNN, yielding encouraging accuracy but with high computational overhead. In this work, we present the Feature-Aligned Person Search Network (AlignPS), the first anchor-free framework to efficiently tackle this challenging task. AlignPS explicitly addresses the major challenges, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task), when accommodating an anchor-free detector for this task. More specifically, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings by following a re-id first principle. Such a simple design directly improves the baseline anchor-free model on CUHK-SYSU by more than 20% in mAP. Moreover, AlignPS outperforms state-of-the-art two-stage methods, with a higher speed. Code is available at https://github.com/daodaofr/AlignPS
Person search aims to simultaneously localize and identify a query person from realistic, uncropped images. To achieve this goal, state-of-the-art models typically add a re-id branch upon two-stage detectors like Faster R-CNN. Owing to the ROI-Align operation, this pipeline yields promising accuracy as re-id features are explicitly aligned with the corresponding object regions, but in the meantime, it introduces high computational overhead due to dense object anchors. In this work, we present an anchor-free approach to efficiently tackling this challenging task, by introducing the following dedicated designs. First, we select an anchor-free detector (i.e., FCOS) as the prototype of our framework. Due to the lack of dense object anchors, it exhibits significantly higher efficiency compared with existing person search models. Second, when directly accommodating this anchor-free detector for person search, there exist several major challenges in learning robust re-id features, which we summarize as the misalignment issues in different levels (i.e., scale, region, and task). To address these issues, we propose an aligned feature aggregation module to generate more discriminative and robust feature embeddings. Accordingly, we name our model as Feature-Aligned Person Search Network (AlignPS). Third, by investigating the advantages of both anchor-based and anchor-free models, we further augment AlignPS with an ROI-Align head, which significantly improves the robustness of re-id features while still keeping our model highly efficient. Extensive experiments conducted on two challenging benchmarks (i.e., CUHK-SYSU and PRW) demonstrate that our framework achieves state-of-the-art or competitive performance, while displaying higher efficiency. All the source codes, data, and trained models are available at: https://github.com/daodaofr/alignps.
Visual object tracking is an important application of computer vision. Recently, Siamese based trackers have achieved good accuracy. However, most of Siamese based trackers are not efficient, as they exhaustively search potential object locations to define anchors and then classify each anchor (i.e., a bounding box). This paper develops the first Anchor Free Siamese Network (AFSN). Specifically, a target object is defined by a bounding box center, tracking offset, and object size. All three are regressed by Siamese network with no additional classification or regional proposal, and performed once for each frame. We also tune the stride and receptive field for Siamese network, and further perform ablation experiments to quantitatively illustrate the effectiveness of our AFSN. We evaluate AFSN using five most commonly used benchmarks and compare to the best anchor-based trackers with source codes available for each benchmark. AFSN is 3-425 times faster than these best anchor based trackers. AFSN is also 5.97% to 12.4% more accurate in terms of all metrics for benchmark sets OTB2015, VOT2015, VOT2016, VOT2018 and TrackingNet, except that SiamRPN++ is 4% better than AFSN in terms of Expected Average Overlap (EAO) on VOT2018 (but SiamRPN++ is 3.9 times slower).
Object detection networks are powerful in computer vision, but not necessarily optimized for biomedical object detection. In this work, we propose CircleNet, a simple anchor-free detection method with circle representation for detection of the ball-shaped glomerulus. Different from the traditional bounding box based detection method, the bounding circle (1) reduces the degrees of freedom of detection representation, (2) is naturally rotation invariant, (3) and optimized for ball-shaped objects. The key innovation to enable this representation is the anchor-free framework with the circle detection head. We evaluate CircleNet in the context of detection of glomerulus. CircleNet increases average precision of the glomerulus detection from 0.598 to 0.647. Another key advantage is that CircleNet achieves better rotation consistency compared with bounding box representations.
Deep neural networks have been demonstrated to be vulnerable to adversarial attacks: subtle perturbation can completely change prediction result. The vulnerability has led to a surge of research in this direction, including adversarial attacks on object detection networks. However, previous studies are dedicated to attacking anchor-based object detectors. In this paper, we present the first adversarial attack on anchor-free object detectors. It conducts category-wise, instead of previously instance-wise, attacks on object detectors, and leverages high-level semantic information to efficiently generate transferable adversarial examples, which can also be transferred to attack other object detectors, even anchor-based detectors such as Faster R-CNN. Experimental results on two benchmark datasets demonstrate that our proposed method achieves state-of-the-art performance and transferability.
Object detection is a basic but challenging task in computer vision, which plays a key role in a variety of industrial applications. However, object detectors based on deep learning usually require greater storage requirements and longer inference time, which hinders its practicality seriously. Therefore, a trade-off between effectiveness and efficiency is necessary in practical scenarios. Considering that without constraint of pre-defined anchors, anchor-free detectors can achieve acceptable accuracy and inference speed simultaneously. In this paper, we start from an anchor-free detector called TTFNet, modify the structure of TTFNet and introduce multiple existing tricks to realize effective server and mobile solutions respectively. Since all experiments in this paper are conducted based on PaddlePaddle, we call the model as PAFNet(Paddle Anchor Free Network). For server side, PAFNet can achieve a better balance between effectiveness (42.2% mAP) and efficiency (67.15 FPS) on a single V100 GPU. For moblie side, PAFNet-lite can achieve a better accuracy of (23.9% mAP) and 26.00 ms on Kirin 990 ARM CPU, outperforming the existing state-of-the-art anchor-free detectors by significant margins. Source code is at https://github.com/PaddlePaddle/PaddleDetection.