Do you want to publish a course? Click here

Motif Prediction with Graph Neural Networks

201   0   0.0 ( 0 )
 Added by Maciej Besta
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Link prediction is one of the central problems in graph mining. However, recent studies highlight the importance of higher-order network analysis, where complex structures called motifs are the first-class citizens. We first show that existing link prediction schemes fail to effectively predict motifs. To alleviate this, we establish a general motif prediction problem and we propose several heuristics that assess the chances for a specified motif to appear. To make the scores realistic, our heuristics consider - among others - correlations between links, i.e., the potential impact of some arriving links on the appearance of other links in a given motif. Finally, for highest accuracy, we develop a graph neural network (GNN) architecture for motif prediction. Our architecture offers vertex features and sampling schemes that capture the rich structural properties of motifs. While our heuristics are fast and do not need any training, GNNs ensure highest accuracy of predicting motifs, both for dense (e.g., k-cliques) and for sparse ones (e.g., k-stars). We consistently outperform the best available competitor by more than 10% on average and up to 32% in area under the curve. Importantly, the advantages of our approach over schemes based on uncorrelated link prediction increase with the increasing motif size and complexity. We also successfully apply our architecture for predicting more arbitrary clusters and communities, illustrating its potential for graph mining beyond motif analysis.



rate research

Read More

Locating the source of an epidemic, or patient zero (P0), can provide critical insights into the infections transmission course and allow efficient resource allocation. Existing methods use graph-theoretic centrality measures and expensive message-passing algorithms, requiring knowledge of the underlying dynamics and its parameters. In this paper, we revisit this problem using graph neural networks (GNNs) to learn P0. We establish a theoretical limit for the identification of P0 in a class of epidemic models. We evaluate our method against different epidemic models on both synthetic and a real-world contact network considering a disease with history and characteristics of COVID-19. % We observe that GNNs can identify P0 close to the theoretical bound on accuracy, without explicit input of dynamics or its parameters. In addition, GNN is over 100 times faster than classic methods for inference on arbitrary graph topologies. Our theoretical bound also shows that the epidemic is like a ticking clock, emphasizing the importance of early contact-tracing. We find a maximum time after which accurate recovery of the source becomes impossible, regardless of the algorithm used.
133 - Hao Peng , Jianxin Li , Qiran Gong 2018
Many real-world problems can be represented as graph-based learning problems. In this paper, we propose a novel framework for learning spatial and attentional convolution neural networks on arbitrary graphs. Different from previous convolutional neural networks on graphs, we first design a motif-matching guided subgraph normalization method to capture neighborhood information. Then we implement subgraph-level self-attentional layers to learn different importances from different subgraphs to solve graph classification problems. Analogous to image-based attentional convolution networks that operate on locally connected and weighted regions of the input, we also extend graph normalization from one-dimensional node sequence to two-dimensional node grid by leveraging motif-matching, and design self-attentional layers without requiring any kinds of cost depending on prior knowledge of the graph structure. Our results on both bioinformatics and social network datasets show that we can significantly improve graph classification benchmarks over traditional graph kernel and existing deep models.
Cross-platform account matching plays a significant role in social network analytics, and is beneficial for a wide range of applications. However, existing methods either heavily rely on high-quality user generated content (including user profiles) or suffer from data insufficiency problem if only focusing on network topology, which brings researchers into an insoluble dilemma of model selection. In this paper, to address this problem, we propose a novel framework that considers multi-level graph convolutions on both local network structure and hypergraph structure in a unified manner. The proposed method overcomes data insufficiency problem of existing work and does not necessarily rely on user demographic information. Moreover, to adapt the proposed method to be capable of handling large-scale social networks, we propose a two-phase space reconciliation mechanism to align the embedding spaces in both network partitioning based parallel training and account matching across different social networks. Extensive experiments have been conducted on two large-scale real-life social networks. The experimental results demonstrate that the proposed method outperforms the state-of-the-art models with a big margin.
Although significant effort has been applied to fact-checking, the prevalence of fake news over social media, which has profound impact on justice, public trust and our society, remains a serious problem. In this work, we focus on propagation-based fake news detection, as recent studies have demonstrated that fake news and real news spread differently online. Specifically, considering the capability of graph neural networks (GNNs) in dealing with non-Euclidean data, we use GNNs to differentiate between the propagation patterns of fake and real news on social media. In particular, we concentrate on two questions: (1) Without relying on any text information, e.g., tweet content, replies and user descriptions, how accurately can GNNs identify fake news? Machine learning models are known to be vulnerable to adversarial attacks, and avoiding the dependence on text-based features can make the model less susceptible to the manipulation of advanced fake news fabricators. (2) How to deal with new, unseen data? In other words, how does a GNN trained on a given dataset perform on a new and potentially vastly different dataset? If it achieves unsatisfactory performance, how do we solve the problem without re-training the model on the entire data from scratch? We study the above questions on two datasets with thousands of labelled news items, and our results show that: (1) GNNs can achieve comparable or superior performance without any text information to state-of-the-art methods. (2) GNNs trained on a given dataset may perform poorly on new, unseen data, and direct incremental training cannot solve the problem---this issue has not been addressed in the previous work that applies GNNs for fake news detection. In order to solve the problem, we propose a method that achieves balanced performance on both existing and new datasets, by using techniques from continual learning to train GNNs incrementally.
Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed networks where the nodes have the same type. Signed bipartite networks are different from classical signed networks, which contain two different node sets and signed links between two node sets. Signed bipartite networks can be commonly found in many fields including business, politics, and academics, but have been less studied. In this work, we firstly define the signed relationship of the same set of nodes and provide a new perspective for analyzing signed bipartite networks. Then we do some comprehensive analysis of balance theory from two perspectives on several real-world datasets. Specifically, in the peer review dataset, we find that the ratio of balanced isomorphism in signed bipartite networks increased after rebuttal phases. Guided by these two perspectives, we propose a novel Signed Bipartite Graph Neural Networks (SBGNNs) to learn node embeddings for signed bipartite networks. SBGNNs follow most GNNs message-passing scheme, but we design new message functions, aggregation functions, and update functions for signed bipartite networks. We validate the effectiveness of our model on four real-world datasets on Link Sign Prediction task, which is the main machine learning task for signed networks. Experimental results show that our SBGNN model achieves significant improvement compared with strong baseline methods, including feature-based methods and network embedding methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا