Do you want to publish a course? Click here

Signed Bipartite Graph Neural Networks

92   0   0.0 ( 0 )
 Added by Junjie Huang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed networks where the nodes have the same type. Signed bipartite networks are different from classical signed networks, which contain two different node sets and signed links between two node sets. Signed bipartite networks can be commonly found in many fields including business, politics, and academics, but have been less studied. In this work, we firstly define the signed relationship of the same set of nodes and provide a new perspective for analyzing signed bipartite networks. Then we do some comprehensive analysis of balance theory from two perspectives on several real-world datasets. Specifically, in the peer review dataset, we find that the ratio of balanced isomorphism in signed bipartite networks increased after rebuttal phases. Guided by these two perspectives, we propose a novel Signed Bipartite Graph Neural Networks (SBGNNs) to learn node embeddings for signed bipartite networks. SBGNNs follow most GNNs message-passing scheme, but we design new message functions, aggregation functions, and update functions for signed bipartite networks. We validate the effectiveness of our model on four real-world datasets on Link Sign Prediction task, which is the main machine learning task for signed networks. Experimental results show that our SBGNN model achieves significant improvement compared with strong baseline methods, including feature-based methods and network embedding methods.



rate research

Read More

636 - Jiangxia Cao , Xixun Lin , Shu Guo 2020
Bipartite graph embedding has recently attracted much attention due to the fact that bipartite graphs are widely used in various application domains. Most previous methods, which adopt random walk-based or reconstruction-based objectives, are typically effective to learn local graph structures. However, the global properties of bipartite graph, including community structures of homogeneous nodes and long-range dependencies of heterogeneous nodes, are not well preserved. In this paper, we propose a bipartite graph embedding called BiGI to capture such global properties by introducing a novel local-global infomax objective. Specifically, BiGI first generates a global representation which is composed of two prototype representations. BiGI then encodes sampled edges as local representations via the proposed subgraph-level attention mechanism. Through maximizing the mutual information between local and global representations, BiGI enables nodes in bipartite graph to be globally relevant. Our model is evaluated on various benchmark datasets for the tasks of top-K recommendation and link prediction. Extensive experiments demonstrate that BiGI achieves consistent and significant improvements over state-of-the-art baselines. Detailed analyses verify the high effectiveness of modeling the global properties of bipartite graph.
Network embedding is aimed at mapping nodes in a network into low-dimensional vector representations. Graph Neural Networks (GNNs) have received widespread attention and lead to state-of-the-art performance in learning node representations. However, most GNNs only work in unsigned networks, where only positive links exist. It is not trivial to transfer these models to signed directed networks, which are widely observed in the real world yet less studied. In this paper, we first review two fundamental sociological theories (i.e., status theory and balance theory) and conduct empirical studies on real-world datasets to analyze the social mechanism in signed directed networks. Guided by related sociological theories, we propose a novel Signed Directed Graph Neural Networks model named SDGNN to learn node embeddings for signed directed networks. The proposed model simultaneously reconstructs link signs, link directions, and signed directed triangles. We validate our models effectiveness on five real-world datasets, which are commonly used as the benchmark for signed network embedding. Experiments demonstrate the proposed model outperforms existing models, including feature-based methods, network embedding methods, and several GNN methods.
Link prediction is one of the central problems in graph mining. However, recent studies highlight the importance of higher-order network analysis, where complex structures called motifs are the first-class citizens. We first show that existing link prediction schemes fail to effectively predict motifs. To alleviate this, we establish a general motif prediction problem and we propose several heuristics that assess the chances for a specified motif to appear. To make the scores realistic, our heuristics consider - among others - correlations between links, i.e., the potential impact of some arriving links on the appearance of other links in a given motif. Finally, for highest accuracy, we develop a graph neural network (GNN) architecture for motif prediction. Our architecture offers vertex features and sampling schemes that capture the rich structural properties of motifs. While our heuristics are fast and do not need any training, GNNs ensure highest accuracy of predicting motifs, both for dense (e.g., k-cliques) and for sparse ones (e.g., k-stars). We consistently outperform the best available competitor by more than 10% on average and up to 32% in area under the curve. Importantly, the advantages of our approach over schemes based on uncorrelated link prediction increase with the increasing motif size and complexity. We also successfully apply our architecture for predicting more arbitrary clusters and communities, illustrating its potential for graph mining beyond motif analysis.
184 - Xiaorui Liu , Wei Jin , Yao Ma 2021
While many existing graph neural networks (GNNs) have been proven to perform $ell_2$-based graph smoothing that enforces smoothness globally, in this work we aim to further enhance the local smoothness adaptivity of GNNs via $ell_1$-based graph smoothing. As a result, we introduce a family of GNNs (Elastic GNNs) based on $ell_1$ and $ell_2$-based graph smoothing. In particular, we propose a novel and general message passing scheme into GNNs. This message passing algorithm is not only friendly to back-propagation training but also achieves the desired smoothing properties with a theoretical convergence guarantee. Experiments on semi-supervised learning tasks demonstrate that the proposed Elastic GNNs obtain better adaptivity on benchmark datasets and are significantly robust to graph adversarial attacks. The implementation of Elastic GNNs is available at url{https://github.com/lxiaorui/ElasticGNN}.
Node representation learning for signed directed networks has received considerable attention in many real-world applications such as link sign prediction, node classification and node recommendation. The challenge lies in how to adequately encode the complex topological information of the networks. Recent studies mainly focus on preserving the first-order network topology which indicates the closeness relationships of nodes. However, these methods generally fail to capture the high-order topology which indicates the local structures of nodes and serves as an essential characteristic of the network topology. In addition, for the first-order topology, the additional value of non-existent links is largely ignored. In this paper, we propose to learn more representative node embeddings by simultaneously capturing the first-order and high-order topology in signed directed networks. In particular, we reformulate the representation learning problem on signed directed networks from a variational auto-encoding perspective and further develop a decoupled variational embedding (DVE) method. DVE leverages a specially designed auto-encoder structure to capture both the first-order and high-order topology of signed directed networks, and thus learns more representative node embedding. Extensive experiments are conducted on three widely used real-world datasets. Comprehensive results on both link sign prediction and node recommendation task demonstrate the effectiveness of DVE. Qualitative results and analysis are also given to provide a better understanding of DVE.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا