No Arabic abstract
We present a data-driven model predictive control (MPC) scheme for chance-constrained Markov jump systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated which include the true conditional probability distributions with high probability. These sets are updated online and used to formulate a time-varying, risk-averse optimal control problem. We prove recursive feasibility of the resulting MPC scheme and show that the original chance constraints remain satisfied at every time step. Furthermore, we show that under sufficient decrease of the confidence levels, the resulting MPC scheme renders the closed-loop system mean-square stable with respect to the true-but-unknown distributions, while remaining less conservative than a fully robust approach. Finally, we show that the data-driven value function converges to its nominal counterpart as the sample size grows to infinity. We illustrate our approach on a numerical example.
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon estimator which uniquely identifies a sub-sequence of past mode transitions and the corresponding continuous state, allowing for arbitrary switching behavior. Unlike traditional approaches to mode estimation, we do not require an offline exhaustive search over mode sequences to determine the size of the observation window, but rather select it online. If the system is weakly mode observable, the window size will be upper bounded, leading to a finite-memory observer. We integrate the estimation procedure with a simple distributionally robust controller, which hedges against misestimations of the transition probabilities due to finite sample sizes. As additional mode transitions are observed, the used ambiguity sets are updated, resulting in continual improvements of the control performance. The practical applicability of the approach is illustrated on small numerical examples.
We present a data-driven model predictive control scheme for chance-constrained Markovian switching systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated which include the true conditional probability distributions with high probability. These sets are updated online and used to formulate a time-varying, risk-averse optimal control problem. We prove recursive feasibility of the resulting MPC scheme and show that the original chance constraints remain satisfied at every time step. Furthermore, we show that under sufficient decrease of the confidence levels, the resulting MPC scheme renders the closed-loop system mean-square stable with respect to the true-but-unknown distributions, while remaining less conservative than a fully robust approach.
We consider the problem of designing control laws for stochastic jump linear systems where the disturbances are drawn randomly from a finite sample space according to an unknown distribution, which is estimated from a finite sample of i.i.d. observations. We adopt a distributionally robust approach to compute a mean-square stabilizing feedback gain with a given probability. The larger the sample size, the less conservative the controller, yet our methodology gives stability guarantees with high probability, for any number of samples. Using tools from statistical learning theory, we estimate confidence regions for the unknown probability distributions (ambiguity sets) which have the shape of total variation balls centered around the empirical distribution. We use these confidence regions in the design of appropriate distributionally robust controllers and show that the associated stability conditions can be cast as a tractable linear matrix inequality (LMI) by using conjugate duality. The resulting design procedure scales gracefully with the size of the probability space and the system dimensions. Through a numerical example, we illustrate the superior sample complexity of the proposed methodology over the stochastic approach.
Model Predictive Control (MPC) has shown the great performance of target optimization and constraint satisfaction. However, the heavy computation of the Optimal Control Problem (OCP) at each triggering instant brings the serious delay from state sampling to the control signals, which limits the applications of MPC in resource-limited robot manipulator systems over complicated tasks. In this paper, we propose a novel robust tube-based smooth-MPC strategy for nonlinear robot manipulator planning systems with disturbances and constraints. Based on piecewise linearization and state prediction, our control strategy improves the smoothness and optimizes the delay of the control process. By deducing the deviation of the real system states and the nominal system states, we can predict the next real state set at the current instant. And by using this state set as the initial condition, we can solve the next OCP ahead and store the optimal controls based on the nominal system states, which eliminates the delay. Furthermore, we linearize the nonlinear system with a given upper bound of error, reducing the complexity of the OCP and improving the response speed. Based on the theoretical framework of tube MPC, we prove that the control strategy is recursively feasible and closed-loop stable with the constraints and disturbances. Numerical simulations have verified the efficacy of the designed approach compared with the conventional MPC.
Optimal control of a stochastic dynamical system usually requires a good dynamical model with probability distributions, which is difficult to obtain due to limited measurements and/or complicated dynamics. To solve it, this work proposes a data-driven distributionally robust control framework with the Wasserstein metric via a constrained two-player zero-sum Markov game, where the adversarial player selects the probability distribution from a Wasserstein ball centered at an empirical distribution. Then, the game is approached by its penalized version, an optimal stabilizing solution of which is derived explicitly in a linear structure under the Riccati-type iterations. Moreover, we design a model-free Q-learning algorithm with global convergence to learn the optimal controller. Finally, we verify the effectiveness of the proposed learning algorithm and demonstrate its robustness to the probability distribution errors via numerical examples.