No Arabic abstract
We consider the problem of designing control laws for stochastic jump linear systems where the disturbances are drawn randomly from a finite sample space according to an unknown distribution, which is estimated from a finite sample of i.i.d. observations. We adopt a distributionally robust approach to compute a mean-square stabilizing feedback gain with a given probability. The larger the sample size, the less conservative the controller, yet our methodology gives stability guarantees with high probability, for any number of samples. Using tools from statistical learning theory, we estimate confidence regions for the unknown probability distributions (ambiguity sets) which have the shape of total variation balls centered around the empirical distribution. We use these confidence regions in the design of appropriate distributionally robust controllers and show that the associated stability conditions can be cast as a tractable linear matrix inequality (LMI) by using conjugate duality. The resulting design procedure scales gracefully with the size of the probability space and the system dimensions. Through a numerical example, we illustrate the superior sample complexity of the proposed methodology over the stochastic approach.
We study safe, data-driven control of (Markov) jump linear systems with unknown transition probabilities, where both the discrete mode and the continuous state are to be inferred from output measurements. To this end, we develop a receding horizon estimator which uniquely identifies a sub-sequence of past mode transitions and the corresponding continuous state, allowing for arbitrary switching behavior. Unlike traditional approaches to mode estimation, we do not require an offline exhaustive search over mode sequences to determine the size of the observation window, but rather select it online. If the system is weakly mode observable, the window size will be upper bounded, leading to a finite-memory observer. We integrate the estimation procedure with a simple distributionally robust controller, which hedges against misestimations of the transition probabilities due to finite sample sizes. As additional mode transitions are observed, the used ambiguity sets are updated, resulting in continual improvements of the control performance. The practical applicability of the approach is illustrated on small numerical examples.
We present a data-driven model predictive control (MPC) scheme for chance-constrained Markov jump systems with unknown switching probabilities. Using samples of the underlying Markov chain, ambiguity sets of transition probabilities are estimated which include the true conditional probability distributions with high probability. These sets are updated online and used to formulate a time-varying, risk-averse optimal control problem. We prove recursive feasibility of the resulting MPC scheme and show that the original chance constraints remain satisfied at every time step. Furthermore, we show that under sufficient decrease of the confidence levels, the resulting MPC scheme renders the closed-loop system mean-square stable with respect to the true-but-unknown distributions, while remaining less conservative than a fully robust approach. Finally, we show that the data-driven value function converges to its nominal counterpart as the sample size grows to infinity. We illustrate our approach on a numerical example.
We present a new method for the automated synthesis of safe and robust Proportional-Integral-Derivative (PID) controllers for stochastic hybrid systems. Despite their widespread use in industry, no automated method currently exists for deriving a PID controller (or any other type of controller, for that matter) with safety and performance guarantees for such a general class of systems. In particular, we consider hybrid systems with nonlinear dynamics (Lipschitz-continuous ordinary differential equations) and random parameters, and we synthesize PID controllers such that the resulting closed-loop systems satisfy safety and performance constraints given as probabilistic bounded reachability properties. Our technique leverages SMT solvers over the reals and nonlinear differential equations to provide formal guarantees that the synthesized controllers satisfy such properties. These controllers are also robust by design since they minimize the probability of reaching an unsafe state in the presence of random disturbances. We apply our approach to the problem of insulin regulation for type 1 diabetes, synthesizing controllers with robust responses to large random meal disturbances, thereby enabling them to maintain blood glucose levels within healthy, safe ranges.
We propose a Thompson sampling-based learning algorithm for the Linear Quadratic (LQ) control problem with unknown system parameters. The algorithm is called Thompson sampling with dynamic episodes (TSDE) where two stopping criteria determine the lengths of the dynamic episodes in Thompson sampling. The first stopping criterion controls the growth rate of episode length. The second stopping criterion is triggered when the determinant of the sample covariance matrix is less than half of the previous value. We show under some conditions on the prior distribution that the expected (Bayesian) regret of TSDE accumulated up to time T is bounded by O(sqrt{T}). Here O(.) hides constants and logarithmic factors. This is the first O(sqrt{T} ) bound on expected regret of learning in LQ control. By introducing a reinitialization schedule, we also show that the algorithm is robust to time-varying drift in model parameters. Numerical simulations are provided to illustrate the performance of TSDE.
In quantum engineering, faults may occur in a quantum control system, which will cause the quantum control system unstable or deteriorate other relevant performance of the system. This note presents an estimator-based fault-tolerant control design approach for a class of linear quantum stochastic systems subject to fault signals. In this approach, the fault signals and some commutative components of the quantum system observables are estimated, and a fault-tolerant controller is designed to compensate the effect of the fault signals. Numerical procedures are developed for controller design and an example is presented to demonstrate the proposed design approach.