Do you want to publish a course? Click here

The mass of a Lifshitz black hole

59   0   0.0 ( 0 )
 Added by Gaston Giribet
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known that massive 3D gravity admits solutions that describe Lifshitz black holes as those considered in non-relativistic holography. However, the determination of the mass of such black holes remained unclear as many different results were reported in the literature presenting discrepancies. Here, by using a robust method that permits to tackle the problem in the strong field regime, we determine the correct mass of the Lifshitz black hole of the higher-derivative massive gravity and compare it with other results obtained by different methods. Positivity of the mass spectrum demands an odd normalization of the gravity action. In spite of this fact, the result turns out to be consistent with computations inspired in holography.



rate research

Read More

We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.
We study the dynamical evolution of a massless scalar perturbation in the Hov{r}ava-Lifshitz black-hole spacetimes with the coupling constants $lambda={1/3}$, $lambda={1/2}$ and $lambda=3$, respectively. Our calculation shows that, for the three cases, the scalar perturbations decay without any oscillation in which the decay rate imprints the parameter of the Hov{r}ava-Lifshitz black hole. The results are quite different from those in the Schwarzschild AdS black hole and can help us understand more about the Hov{r}ava-Lifshitz gravity.
390 - Martin OLoughlin 2013
We discuss the near singularity region of the linear mass Vaidya metric for massless particles with non-zero angular momentum. In particular we look at massless geodesics with non-zero angular momentum near the vanishing point of a special subclass of linear mass Vaidya metrics. We also investigate this same structure in the numerical solutions for the scattering of massless scalars from the singularity. Finally we make some comments on the possibility of using this metric as a semi-classical model for the end-point of black hole evaporation.
113 - Maciej Dunajski , Paul Tod 2021
We use the isometric embedding of the spatial horizon of fast rotating Kerr black hole in a hyperbolic space to compute the quasi-local mass of the horizon for any value of the spin parameter $j=J/m^2$. The mass is monotonically decreasing from twice the ADM mass at $j=0$ to $1.76569m$ at $j=sqrt{3}/2$. It then monotonicaly increases to a maximum around $j=0.99907$, and finally decreases to $2.01966m$ for $j=1$ which corresponds to the extreme Kerr black hole.
We present the detailed analyses of a model of loop quantum Schwarzschild interior coupled to a massless scalar field and extend the results in our previous rapid communication arXiv:2006.08313 to more general schemes. It is shown that the spectrum of the black hole mass is discrete and does not contain zero. This indicates the existence of a black hole remnant after Hawking evaporation due to loop quantum gravity effects. Besides to show the existence of a stable black hole remnant in the vacuum case, the quantum dynamics for the non-vacuum case is also solved and compared with the effective one.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا