We discuss the near singularity region of the linear mass Vaidya metric for massless particles with non-zero angular momentum. In particular we look at massless geodesics with non-zero angular momentum near the vanishing point of a special subclass of linear mass Vaidya metrics. We also investigate this same structure in the numerical solutions for the scattering of massless scalars from the singularity. Finally we make some comments on the possibility of using this metric as a semi-classical model for the end-point of black hole evaporation.
We discuss the near singularity region of the linear mass Vaidya metric. In particular we investi- gate the structure in the numerical solutions for the scattering of scalar and electromagnetic metric perturbations from the singularity. In addition to directly integrating the full wave-equation, we use the symmetry of the metric to reduce the problem to that of an ODE. We observe that, around the total evaporation point, quasi-normal like oscillations appear, indicating that this may be an interesting model for the description of the end-point of black hole evaporation.
An approach to black hole quantization is proposed wherein it is assumed that quantum coherence is preserved. A consequence of this is that the Penrose diagram describing gravitational collapse will show the same topological structure as flat Minkowski space. After giving our motivations for such a quantization procedure we formulate the background field approximation, in which particles are divided into hard particles and soft particles. The background space-time metric depends both on the in-states and on the out-states. We present some model calculations and extensive discussions. In particular, we show, in the context of a toy model, that the $S$-matrix describing soft particles in the hard particle background of a collapsing star is unitary, nevertheless, the spectrum of particles is shown to be approximately thermal. We also conclude that there is an important topological constraint on functional integrals.
We investigate the evaporation process of a Kerr-de Sitter black hole with the Unruh-Hawking-like vacuum state, which is a realistic vacuum state modelling the evaporation process of a black hole originating from gravitational collapse. We also compute the greybody factors for gravitons, photons, and conformal-coupling massless scalar particles by using the analytic solutions of the Teukolsky equation in the Kerr-de Sitter background. It turns out that the cosmological constant quenches the amplification factor and it approaches to zero towards the critical point where the Nariai and extremal limits merge together. We confirm that even near the critical point, the superradiance of gravitons is more significant than that of photons and scalar particles. Angular momentum is carried out by particles several times faster than mass energy decreases. This means that a Kerr-de Sitter black hole rapidly spins down to a nearly Schwarzschild-de Sitter black hole before it completely evaporates. We also compute the time evolution of the Bekenstein-Hawking entropy. The total entropy of the Kerr-de Sitter black hole and cosmological horizon increases with time, which is consistent with the generalized second law of thermodynamics.
We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To that end we resort to Kiselevs solution as the impact such modifications have on the evaporation rate of the black hole becomes more clear. As an application, we study the case for which the thermal dimension is reduced to two.
It is well known that massive 3D gravity admits solutions that describe Lifshitz black holes as those considered in non-relativistic holography. However, the determination of the mass of such black holes remained unclear as many different results were reported in the literature presenting discrepancies. Here, by using a robust method that permits to tackle the problem in the strong field regime, we determine the correct mass of the Lifshitz black hole of the higher-derivative massive gravity and compare it with other results obtained by different methods. Positivity of the mass spectrum demands an odd normalization of the gravity action. In spite of this fact, the result turns out to be consistent with computations inspired in holography.