We use the isometric embedding of the spatial horizon of fast rotating Kerr black hole in a hyperbolic space to compute the quasi-local mass of the horizon for any value of the spin parameter $j=J/m^2$. The mass is monotonically decreasing from twice the ADM mass at $j=0$ to $1.76569m$ at $j=sqrt{3}/2$. It then monotonicaly increases to a maximum around $j=0.99907$, and finally decreases to $2.01966m$ for $j=1$ which corresponds to the extreme Kerr black hole.
The no-hair theorem can be tested in the strong gravity regime by using the top-bottom approach and the bottom-top approach. The non-Kerr spacetime of the later approach is an ideal framework to do the tests in the region very close to the black holes. In this work, we propose a non-Kerr black hole metric (and its charged extension) that is accelerating as well. These new objects are studied for their basic properties and thermodynamics.
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established. Here we calculate the entropy of the Reissner-Nordstrom black hole and of the Kerr black hole, which have two horizons. For the spherically symmetric Reissner-Nordstrom black hole we used several different approaches. All of them give the same result for the entropy and for the corresponding temperature of the thermal Hawking radiation. The entropy is not determined by the area of the outer horizon, and it is not equal to the sum of the entropies of two horizons. It is determined by the correlations between the two horizons, due to which the total entropy of the black hole and the temperature of Hawking radiation depend only on mass $M$ of the black hole and do not depend on the black hole charge $Q$. For the Kerr and Kerr-Newman black holes it is shown that their entropy has the similar property: it depends only on mass $M$ of the black hole and does not depend on the angular momentum $J$ and charge $Q$.
In this paper we study the fermion quasi-normal modes of a 4-dimensional rotating black-hole using the WKB(J) (to third and sixth order) and the AIM semi-analytic methods in the massless Dirac fermion sector. These semi-analytic approximations are computed in a pedagogical manner with comparisons made to the numerical values of the quasi-normal mode frequencies presented in the literature. It was found that The WKB(J) method and AIM show good agreement with direct numerical solutions for low values of the overtone number $n$ and angular quantum number l.
The extendibility of spacetime and the existence of weak solutions to the Einstein field equations beyond Cauchy horizons, is a crucial ingredient to examine the limits of General Relativity. Strong Cosmic Censorship serves as a firewall for gravitation by demanding inextendibility of spacetime beyond the Cauchy horizon. For asymptotically flat spacetimes, the predominance of the blueshift instability and the subsequent formation of a mass-inflation singularity at the Cauchy horizon have, so far, substantiated the conjecture. Accelerating black holes, described by the $C-$metric, are exact solutions of the field equations without a cosmological constant, which possess an acceleration horizon with similar causal properties to the cosmological horizon of de Sitter spacetime. Here, by considering linear scalar field perturbations, we provide numerical evidence for the stability of the Cauchy horizon of charged accelerating black holes. In particular, we show that the stability of Cauchy horizons in accelerating charged black holes is connected to quasinormal modes, we discuss the regularity requirement for which weak solutions to the field equations exist at the Cauchy horizon and show that Strong Cosmic Censorship may be violated near extremality.
An atom falling freely into a Kerr black hole in a Boulware-like vacuum is shown to emit radiation with a Planck spectrum at the Hawking temperature. For a cloud of falling atoms with random initial times, the radiation is thermal. The existence of this radiation is due to the acceleration of the vacuum field modes with respect to the falling atom. Its properties can be traced to the dominant role of conformal quantum mechanics (CQM) in the neighborhood of the event horizon. We display this effect for a scalar field, though the acceleration radiation has a universal conformal behavior that is exhibited by all fields in the background of generic black holes.