Do you want to publish a course? Click here

Dirac quasinormal modes for a 4-dimensional Lifshitz Black Hole

117   0   0.0 ( 0 )
 Added by P. A. Gonzalez
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the quasinormal modes of fermionic perturbations for an asymptotically Lifshitz black hole in 4-dimensions with dynamical exponent z=2 and plane topology for the transverse section, and we find analytically and numerically the quasinormal modes for massless fermionic fields by using the improved asymptotic iteration method and the Horowitz-Hubeny method. The quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under massless fermionic field perturbations. Remarkably, both numerical methods yield consistent results; i.e., both methods converge to the exact quasinormal frequencies; however, the improved asymptotic iteration method converges in a fewer number of iterations. Also, we find analytically the quasinormal modes for massive fermionic fields for the mode with lowest angular momentum. In this case, the quasinormal frequencies are purely imaginary and negative, which guarantees the stability of these black holes under fermionic field perturbations. Moreover, we show that the lowest quasinormal frequencies have real and imaginary parts for the mode with higher angular momentum by using the improved asymptotic iteration method.



rate research

Read More

100 - A. Lopez-Ortega 2014
In a D-dimensional Lifshitz black hole we calculate exactly the quasinormal frequencies of a test Dirac field in the massless and zero angular eigenvalue limits. These results are an extension of the previous calculations in which the quasinormal frequencies of the Dirac field are determined, but in four dimensions. We discuss the four-dimensional limit of our expressions for the quasinormal frequencies and compare with the previous results. We also determine whether the Dirac field has unstable modes in the D-dimensional Lifshitz spacetime.
160 - A. Lopez-Ortega 2014
Motivated by the recent interest in the study of the spacetimes that are asymptotically Lifshitz and in order to extend some previous results, we calculate exactly the quasinormal frequencies of the electromagnetic field in a D-dimensional asymptotically Lifshitz black hole. Based on the values obtained for the quasinormal frequencies we discuss the classical stability of the quasinormal modes. We also study whether the electromagnetic field possesses unstable modes in the D-dimensional Lifshitz spacetime.
For a two-dimensional black hole we determine the quasinormal frequencies of the Klein-Gordon and Dirac fields. In contrast to the well known examples whose spectrum of quasinormal frequencies is discrete, for this black hole we find a continuous spectrum of quasinormal frequencies, but there are unstable quasinormal modes. In the framework of the Hod and Maggiore proposals we also discuss the consequences of these results on the form of the entropy spectrum for the two-dimensional black hole.
We study scalar perturbations for a four-dimensional asymptotically Lifshitz black hole in conformal gravity with dynamical exponent z=0, and spherical topology for the transverse section, and we find analytically and numerically the quasinormal modes for scalar fields for some special cases. Then, we study the stability of these black holes under scalar field perturbations and the greybody factors.
In this article we show that the asymptotic iteration method (AIM) allows one to numerically find the quasinormal modes of Schwarzschild and Schwarzschild de Sitter (SdS) black holes. An added benefit of the method is that it can also be used to calculate the Schwarzschild anti-de Sitter (SAdS) quasinormal modes for the case of spin zero perturbations. We also discuss an improved version of the AIM, more suitable for numerical implementation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا