In-situ etching using Ga flux in an ultra-high vacuum environment like MBE is introduced as a method to make high aspect ratio 3 dimensional structures in $beta$-Ga2O3. Etching of $beta$-Ga2O3 due to excess Ga adatoms on the epilayer surface had been viewed as non-ideal for epitaxial growth especially since it results in plateauing and lowering of growth rate. In this study, we use this well-known reaction from epitaxial growth to intentionally etch $beta$-Ga2O3. We demonstrate etch rate ranging from 2.9 nm/min to 30 nm/min with the highest reported etch rate being only limited by the highest Ga flux used. Patterned in-situ etching is also demonstrated and used to study the effect of fin orientation on the sidewall profiles and dopant (Si) segregation on the etched surface. Using in-situ Ga etching, we also demonstrate 150 nm wide fins and 200 nm wide nano pillars with high aspect ratio. This new etching method could enable future development of highly scaled vertical and lateral 3D devices in $beta$-Ga2O3.
In this paper, we have demonstrated the large-size free-standing single-crystal b-Ga2O3 NMs fabricated by the hydrogen implantation and lift-off process directly from MOCVD grown b-Ga2O3 epifilms on native substrates. The optimum implantation conditions were simulated with a Monte-Carlo simulation to obtain the high hydrogen concentration with a narrow ion distribution at the desired depth. Two as grown b-Ga2O3 samples with different orientation ([100] and [001]) were used and successfully create 1.2 um thick b-Ga2O3 NMs without any physical damages. These b-Ga2O3 NMs were then transfer-printed onto rigid and flexible substrates such as SiC substrate and polyimide substrate. Various material characterizations were performed to investigate the crystal quality, surface morphology, optical property, mechanical property, and bandgap before and after the lift-off and revealed that good material quality is maintained. This result offers several benefits in that the thickness, doping, and size of b-Ga2O3 NMs can be fully controlled. Moreover, more advanced b-Ga2O3-based NM structures such as (AlxGa1-x)2O3/Ga2O3 heterostructure NMs can be directly created from their bulk epitaxy substrates thus this result provides a viable route for the realization of high performance b-Ga2O3 NM-based electronics and optoelectronics that can be built on various substrates and platforms.
We report on the growth and characterization of Ge-doped b{eta}-Ga2O3 thin films using a solid germanium source. b{eta}-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition (LPCVD) reactor with either an oxygen or gallium delivery tube. Films were grown on 6 degree offcut sapphire and (010) b{eta}-Ga2O3 substrates with growth rates between 0.5 - 22 {mu}m/hr. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 10^17 - 10^19 cm-3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 - 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in b{eta}-Ga2O3 is important for the design of high-power electronic devices.
We derive a dielectric function tensor model approach to render the optical response of monoclinic and triclinic symmetry materials with multiple uncoupled infrared and farinfrared active modes. We apply our model approach to monoclinic $beta$-Ga$_2$O$_3$ single crystal samples. Surfaces cut under different angles from a bulk crystal, (010) and ($bar{2}$01), are investigated by generalized spectroscopic ellipsometry within infrared and farinfrared spectral regions. We determine the frequency dependence of 4 independent $beta$-Ga$_2$O$_3$ Cartesian dielectric function tensor elements by matching large sets of experimental data using a point by point data inversion approach. From matching our monoclinic model to the obtained 4 dielectric function tensor components, we determine all infared and farinfrared active transverse optic phonon modes with $A_u$ and $B_u$ symmetry, and their eigenvectors within the monoclinic lattice. We find excellent agreement between our model results and results of density functional theory calculations. We derive and discuss the frequencies of longitudinal optical phonons in $beta$-Ga$_2$O$_3$. We derive and report density and anisotropic mobility parameters of the free charge carriers within the tin doped crystals. We discuss the occurrence of longitudinal phonon plasmon coupled modes in $beta$-Ga$_2$O$_3$ and provide their frequencies and eigenvectors. We also discuss and present monoclinic dielectric constants for static electric fields and frequencies above the reststrahlen range, and we provide a generalization of the Lyddane-Sachs-Teller relation for monoclinic lattices with infrared and farinfrared active modes. We find that the generalized Lyddane-Sachs-Teller relation is fulfilled excellently for $beta$-Ga$_2$O$_3$.
The effects of hydrogen incorporation into beta-Ga2O3 thin films have been investigated by chemical, electrical and optical characterization techniques. Hydrogen incorporation was achieved by remote plasma doping without any structural alterations of the film; however, X-ray photoemission reveals major changes in the oxygen chemical environment. Depth-resolved cathodoluminescence (CL) reveals that the near-surface region of the H-doped Ga2O3 film exhibits a distinct red luminescence (RL) band at 1.9 eV. The emergence of the H-related RL band is accompanied by an enhancement in the electrical conductivity of the film by an order of magnitude. Temperature-resolved CL points to the formation of abundant H-related donors with a binding energy of 28 +/- 4 meV. The RL emission is attributed to shallow donor-deep acceptor pair recombination, where the acceptor is a VGa-H complex and the shallow donor is interstitial H. The binding energy of the VGa-H complex, based on our experimental considerations, is consistent with the computational results by Varley et al [J. Phys.: Condens. Matter, 23, 334212, 2011].
Superconductivity in group IV semiconductors is desired for hybrid devices combining both semiconducting and superconducting properties. Following boron doped diamond and Si, superconductivity has been observed in gallium doped Ge, however the obtained specimen is in polycrystalline form [Herrmannsdorfer et al., Phys. Rev. Lett. 102, 217003 (2009)]. Here, we present superconducting single-crystalline Ge hyperdoped with gallium or aluminium by ion implantation and rear-side flash lamp annealing. The maximum concentration of Al and Ga incorporated into substitutional positions in Ge is eight times higher than the equilibrium solid solubility. This corresponds to a hole concentration above 10^21 cm-3. Using density functional theory in the local density approximation and pseudopotential plane-wave approach, we show that the superconductivity in p-type Ge is phonon-mediated. According to the ab initio calculations the critical superconducting temperature for Al- and Ga-doped Ge is in the range of 0.45 K for 6.25 at.% of dopant concentration being in a qualitative agreement with experimentally obtained values.