Do you want to publish a course? Click here

ZTFJ0038+2030: a long period eclipsing white dwarf and a substellar companion

152   0   0.0 ( 0 )
 Added by Jan van Roestel
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified a deep eclipsing white dwarf with a dark, substellar companion. The lack of an infrared excess and an orbital period of 10 hours made this a potential exoplanet candidate. We obtained high-speed photometry and radial velocity measurements to characterize the system. The white dwarf has a mass of $0.50pm0.02,mathrm{M_{odot}}$ and a temperature of $10900pm200,$K. The companion has a mass of $0.059pm0.004,mathrm{M_{odot}}$ and a small radius of $0.0783pm0.0013,mathrm{R_{odot}}$. It is one of the smallest transiting brown dwarfs known and likely old, $gtrsim 8,$Gyr. The ZTF discovery efficiency of substellar objects transiting white dwarfs is limited by the number of epochs and as ZTF continues to collect data we expect to find more of these systems. This will allow us to measure period and mass distributions and allows us to understand the formation channels of white dwarfs with substellar companions.



rate research

Read More

HIP96515A is a double-lined spectroscopic binary with a visual companion (HIP96515B) at 8.6 arcsec. It is included in the SACY catalog as a potential young star and classified as an eclipsing binary in the ASAS Catalog. We have analyzed spectroscopic and photometric observations of the triple system. The high-resolution optical spectrum of HIP96515A has been used to derive a mass ratio, M_2/M_1, close to 0.9, with the SB2 components showing spectral types of M1 and M2. The ASAS and Hipparcos light-curves of HIP96515A show periodic variations with P=2.3456 days, confirming that HIP96515A is an eclipsing binary with preliminary parameters of i=89, M_Aa=0.59+-0.03 Msun and M_Ab=0.54+-0.03 Msun, for the primary and secondary, respectively, at an estimated distance of 42+-3 pc. This is a new eclipsing binary with component masses below 0.6 Msun. Multi-epoch observations of HIP 96515 A&B show that the system is a common proper motion pair. The optical spectrum of HIP 96515B is consistent with a pure helium atmosphere (DB) white dwarf. We estimate a total age (main-sequence lifetime plus cooling age) of 400 Myr for the white dwarf. If HIP 96515 A&B are coeval, and assuming a common age of 400 Myr, the comparison of the masses of the eclipsing binary members with evolutionary tracks shows that they are underestimated by ~15% and ~10%, for the primary and secondary, respectively.
167 - Warren R. Brown 2017
We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun and a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.
The Transiting Exoplanet Survey Satellite (TESS) has produced a large number of single transit event candidates which are being monitored by the Next Generation Transit Survey (NGTS). We observed a second epoch for the TIC-231005575 system (Tmag = 12.06, Teff = 5500 +- 85 K) with NGTS and a third epoch with Las Cumbres Observatorys (LCO) telescope in South Africa to constrain the orbital period (P = 61.777 d). Subsequent radial velocity measurements with CORALIE revealed the transiting object has a mass of M2 = 0.128 +- 0.003 M$_odot$, indicating the system is a G-M binary. The radius of the secondary is R2 = 0.154 +- 0.008 R$_odot$ and is consistent with models of stellar evolution to better than 1-$sigma$.
We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its $6.91, rm min$ counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISAs sensitivity. Based on its estimated distance of $d=2120^{+131}_{-115},rm pc$, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of $87pm5$ after four years. We find component masses of $M_A= 0.349^{+0.093}_{-0.074},M_odot$ and $M_B=0.384^{+0.114}_{-0.074},M_odot$, radii of $R_A=0.0308^{+0.0026}_{-0.0025},R_odot$ and $R_B = 0.0291^{+0.0032}_{-0.0024},R_odot$, and effective temperatures of $T_A=22200^{+1800}_{-1600},rm K$ and $T_B=16200^{+1200}_{-1000},rm K$. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint ($r>21 , m_{rm AB}$) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.
259 - S.-B. Qian , L. Liu , L.-Y. Zhu 2012
By using six new determined mid-eclipse times together with those collected from the literature, we found that the Observed-Calculated (O-C) curve of RR Cae shows a cyclic change with a period of 11.9 years and an amplitude of 14.3s, while it undergoes an upward parabolic variation (revealing a long-term period increase at a rate of dP/dt =+4.18(+-0.20)x10^(-12). The cyclic change was analyzed for the light-travel time effect that arises from the gravitational influence of a third companion. The mass of the third body was determined to be M_3*sin i = 4.2(+-0.4) M_{Jup} suggesting that it is a circumbinary giant planet when its orbital inclination is larger than 17.6 degree. The orbital separation of the circumbinary planet from the central eclipsing binary is about 5.3(+-0.6)AU. The period increase is opposite to the changes caused by angular momentum loss via magnetic braking or/and gravitational radiation, nor can it be explained by the mass transfer between both components because of its detached configuration. These indicate that the observed upward parabolic change is only a part of a long-period (longer than 26.3 years) cyclic variation, which may reveal the presence of another giant circumbinary planet in a wide orbit.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا