Do you want to publish a course? Click here

Discovery of a Detached, Eclipsing 40 min Period Double White Dwarf Binary and a Friend: Implications for He+CO White Dwarf Mergers

168   0   0.0 ( 0 )
 Added by Warren R. Brown
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of two detached double white dwarf (WD) binaries, SDSS J082239.546+304857.19 and SDSS J104336.275+055149.90, with orbital periods of 40 and 46 min, respectively. The 40 min system is eclipsing; it is composed of a 0.30 Msun and a 0.52 Msun WD. The 46 min system is a likely LISA verification binary. The short 20 Myr and ~34 Myr gravitational wave merger times of the two binaries imply that many more such systems have formed and merged over the age of the Milky Way. We update the estimated Milky Way He+CO WD binary merger rate and affirm our previously published result: He+CO WD binaries merge at a rate at least 40 times greater than the formation rate of stable mass-transfer AM~CVn binaries, and so the majority must have unstable mass-transfer. The implication is that spin-orbit coupling in He+CO WD mergers is weak, or perhaps nova-like outbursts drive He+CO WDs into merger as proposed by Shen.



rate research

Read More

We report the discovery of ZTF J2243+5242, an eclipsing double white dwarf binary with an orbital period of just $8.8$ minutes, the second known eclipsing binary with an orbital period less than ten minutes. The system likely consists of two low-mass white dwarfs, and will merge in approximately 400,000 years to form either an isolated hot subdwarf or an R Coronae Borealis star. Like its $6.91, rm min$ counterpart, ZTF J1539+5027, ZTF J2243+5242 will be among the strongest gravitational wave sources detectable by the space-based gravitational-wave detector The Laser Space Interferometer Antenna (LISA) because its gravitational-wave frequency falls near the peak of LISAs sensitivity. Based on its estimated distance of $d=2120^{+131}_{-115},rm pc$, LISA should detect the source within its first few months of operation, and should achieve a signal-to-noise ratio of $87pm5$ after four years. We find component masses of $M_A= 0.349^{+0.093}_{-0.074},M_odot$ and $M_B=0.384^{+0.114}_{-0.074},M_odot$, radii of $R_A=0.0308^{+0.0026}_{-0.0025},R_odot$ and $R_B = 0.0291^{+0.0032}_{-0.0024},R_odot$, and effective temperatures of $T_A=22200^{+1800}_{-1600},rm K$ and $T_B=16200^{+1200}_{-1000},rm K$. We determined all of these properties, and the distance to this system, using only photometric measurements, demonstrating a feasible way to estimate parameters for the large population of optically faint ($r>21 , m_{rm AB}$) gravitational-wave sources which the Vera Rubin Observatory (VRO) and LISA should identify.
80 - Warren R. Brown 2020
We report the discovery of a 1201 s orbital period binary, the third shortest-period detached binary known. SDSS J232230.20+050942.06 contains two He-core white dwarfs orbiting with a 27 deg inclination. Located 0.76 kpc from the Sun, the binary has an estimated LISA 4-yr signal-to-noise ratio of 40. J2322+0509 is the first He+He white dwarf LISA verification binary, a source class that is predicted to account for one-third of resolved LISA ultra-compact binary detections.
We present high-quality ULTRACAM photometry of the eclipsing detached double-white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely-low mass (< 0.2 Msun) helium-core white dwarf in a 5.6 hr orbit. To date such extremely-low mass WDs, which can have thin, stably-burning outer layers, have been modeled via poorly-constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass-transfer begins. With precise (individual precision ~1%) high-cadence (~2 s) multi-color photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (~13%) systematic uncertainty in the primary He WDs mass. Over the full range of possible envelope thicknesses we find that our primary mass (0.136-0.162 Msun) and surface gravity (log(g)=6.32-6.38; radii are 0.0423-0.0433 Rsun) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Romer delay at 7 sigma significance, providing an additional weak constraint on the masses and limiting the eccentricity to e*cos(omega)= -4e-5 +/- 5e-5. Finally, we use multi-color data to constrain the secondarys effective temperature (7600+/-120 K) and cooling age (1.6-1.7 Gyr).
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopically to be a relatively cool (Teff=5535+-45K) and magnetic (B~2MG) hydrogen-rich white dwarf, with an age of at least 4.8Gyrs. The T dwarf is a recent discovery from the UKIRT Infrared Deep Sky Survey (ULAS 1459+0857), and has a spectral type of T4.5+-0.5 and a distance in the range 43-69pc. With an age constraint (inferred from the white dwarf) of >4.8Gyrs we estimate Teff=1200-1500K and logg=5.4-5.5 for ULAS 1459+0857, making it a benchmark T dwarf with well constrained surface gravity. We also compare the T dwarf spectra with the latest LYON group atmospheric model predictions, which despite some shortcomings are in general agreement with the observed properties of ULAS 1459+0857. The separation of the binary components (16,500-26,500AU, or 365 arcseconds on the sky) is consistent with an evolved version of the more common brown dwarf + main-sequence binary systems now known, and although the system has a wide separation, it is shown to be statistically robust as a non spurious association. The observed colours of the T dwarf show that it is relatively bright in the z band compared to other T dwarfs of similar type, and further investigation is warranted to explore the possibility that this could be a more generic indicator of older T dwarfs. Future observations of this binary system will provide even stronger constraints on the T dwarf properties, and additional systems will combine to give a more comprehensively robust test of the model atmospheres in this temperature regime.
The magnetic white dwarf SDSS J121209.31+013627.7 exhibits a weak, narrow Halpha emission line whose radial velocity and strength are modulated on a period of ~90 minutes. Though indicative of irradiation on a nearby companion, no cool continuum component is evident in the optical spectrum, and IR photometry limits the absolute magnitude of the companion to M_J > 13.37. This is equivalent to an isolated L5 dwarf, with T_eff < 1700 K. Consideration of possible evolutionary histories suggests that, until ~0.6 Gyr ago, the brown dwarf orbited a ~1.5 M_sun main seqeunce star with P ~ 1 yr, a ~ 1 AU, thus resembling many of the gaseous superplanets being found in extrasolar planet searches. Common envelope evolution when the massive star left the main sequence reduced the period to only a few hours, and ensuing angular momentum loss has further degraded the orbit. The binary is ripe for additional observations aimed at better studying brown dwarfs and the effects of irradiation on their structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا