No Arabic abstract
HIP96515A is a double-lined spectroscopic binary with a visual companion (HIP96515B) at 8.6 arcsec. It is included in the SACY catalog as a potential young star and classified as an eclipsing binary in the ASAS Catalog. We have analyzed spectroscopic and photometric observations of the triple system. The high-resolution optical spectrum of HIP96515A has been used to derive a mass ratio, M_2/M_1, close to 0.9, with the SB2 components showing spectral types of M1 and M2. The ASAS and Hipparcos light-curves of HIP96515A show periodic variations with P=2.3456 days, confirming that HIP96515A is an eclipsing binary with preliminary parameters of i=89, M_Aa=0.59+-0.03 Msun and M_Ab=0.54+-0.03 Msun, for the primary and secondary, respectively, at an estimated distance of 42+-3 pc. This is a new eclipsing binary with component masses below 0.6 Msun. Multi-epoch observations of HIP 96515 A&B show that the system is a common proper motion pair. The optical spectrum of HIP 96515B is consistent with a pure helium atmosphere (DB) white dwarf. We estimate a total age (main-sequence lifetime plus cooling age) of 400 Myr for the white dwarf. If HIP 96515 A&B are coeval, and assuming a common age of 400 Myr, the comparison of the masses of the eclipsing binary members with evolutionary tracks shows that they are underestimated by ~15% and ~10%, for the primary and secondary, respectively.
EPIC 216747137 is a new HW~Virginis system discovered by the Kepler spacecraft during its K2 second life. Like the other HW Vir systems, EPIC 216747137 is a post-common-envelope eclipsing binary consisting of a hot subluminous star and a cool low-mass companion. The short orbital period of 3.87 hours produces a strong reflection effect from the secondary (~9% in the R band). Together with AA Dor and V1828 Aql, EPIC 216747137 belongs to a small subgroup of HW Vir systems with a hot evolved sdOB primary. We find the following atmospheric parameters for the hot component: Teff=40400$pm$1000 K, logg=5.56$pm$0.06, log(N(He)/N(H))=$-$2.59$pm$0.05. The sdOB rotational velocity vsini=51$pm$10 km/s implies that the stellar rotation is slower than the orbital revolution and the system is not synchronized. When we combine photometric and spectroscopic results with the Gaia parallax, the best solution for the system corresponds to a primary with a mass of about 0.62 Msun close to, and likely beyond, the central helium exhaustion, while the cool M-dwarf companion has a mass of about 0.11 Msun.
BD And is a fairly bright (V = 10.8), active and close (P = 0.9258 days) eclipsing binary. The cyclic variability of the apparent orbital period as well as third light in the light curves indicate the presence of an additional late-type component. The principal aim is the spectroscopic testing of the third-body hypothesis and determination of absolute stellar parameters for both components of the eclipsing binary. First medium and high-resolution spectroscopy of the system was obtained. The broadening-function technique appropriate for heavily-broadened spectra of close binaries was used. The radial velocities were determined fitting the Gaussian functions and rotational profiles to the broadening functions. A limited amount of photometric data has also been obtained. Although the photometric observations were focused on the obtaining the timing information, a cursory light-curve analysis was also performed. Extracted broadening functions clearly show the presence of a third, slowly-rotating component. Its radial velocity is within error of the systemic velocity of the eclipsing pair, strongly supporting the physical bond. The observed systemic radial-velocity and third-component changes do not support the 9 year orbit found from the timing variability. Masses of the components of the eclipsing pair are determined with about 0.5% precision. Further characterization of the system would require long-term photometric and spectroscopic monitoring.
In a search for eclipsing white dwarfs using the Zwicky Transient Facility lightcurves, we identified a deep eclipsing white dwarf with a dark, substellar companion. The lack of an infrared excess and an orbital period of 10 hours made this a potential exoplanet candidate. We obtained high-speed photometry and radial velocity measurements to characterize the system. The white dwarf has a mass of $0.50pm0.02,mathrm{M_{odot}}$ and a temperature of $10900pm200,$K. The companion has a mass of $0.059pm0.004,mathrm{M_{odot}}$ and a small radius of $0.0783pm0.0013,mathrm{R_{odot}}$. It is one of the smallest transiting brown dwarfs known and likely old, $gtrsim 8,$Gyr. The ZTF discovery efficiency of substellar objects transiting white dwarfs is limited by the number of epochs and as ZTF continues to collect data we expect to find more of these systems. This will allow us to measure period and mass distributions and allows us to understand the formation channels of white dwarfs with substellar companions.
We report the discovery of an eclipsing companion to NLTT 41135, a nearby M5 dwarf that was already known to have a wider, slightly more massive common proper motion companion, NLTT 41136, at 2.4 arcsec separation. Analysis of combined-light and radial velocity curves of the system indicates that NLTT 41135B is a 31-34 +/- 3 MJup brown dwarf (where the range depends on the unknown metallicity of the host star) on a circular orbit. The visual M-dwarf pair appears to be physically bound, so the system forms a hierarchical triple, with masses approximately in the ratio 8:6:1. The eclipses are grazing, preventing an unambiguous measurement of the secondary radius, but follow-up observations of the secondary eclipse (e.g. with the James Webb Space Telescope) could permit measurements of the surface brightness ratio between the two objects, and thus place constraints on models of brown dwarfs.
We present the discovery of the first T dwarf + white dwarf binary system LSPM 1459+0857AB, confirmed through common proper motion and spectroscopy. The white dwarf is a high proper motion object from the LSPM catalogue that we confirm spectroscopically to be a relatively cool (Teff=5535+-45K) and magnetic (B~2MG) hydrogen-rich white dwarf, with an age of at least 4.8Gyrs. The T dwarf is a recent discovery from the UKIRT Infrared Deep Sky Survey (ULAS 1459+0857), and has a spectral type of T4.5+-0.5 and a distance in the range 43-69pc. With an age constraint (inferred from the white dwarf) of >4.8Gyrs we estimate Teff=1200-1500K and logg=5.4-5.5 for ULAS 1459+0857, making it a benchmark T dwarf with well constrained surface gravity. We also compare the T dwarf spectra with the latest LYON group atmospheric model predictions, which despite some shortcomings are in general agreement with the observed properties of ULAS 1459+0857. The separation of the binary components (16,500-26,500AU, or 365 arcseconds on the sky) is consistent with an evolved version of the more common brown dwarf + main-sequence binary systems now known, and although the system has a wide separation, it is shown to be statistically robust as a non spurious association. The observed colours of the T dwarf show that it is relatively bright in the z band compared to other T dwarfs of similar type, and further investigation is warranted to explore the possibility that this could be a more generic indicator of older T dwarfs. Future observations of this binary system will provide even stronger constraints on the T dwarf properties, and additional systems will combine to give a more comprehensively robust test of the model atmospheres in this temperature regime.