Do you want to publish a course? Click here

Theory of Topological Corner State Laser in Kagome Waveguide Arrays

72   0   0.0 ( 0 )
 Added by Yiqi Zhang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In comparison with conventional lasers, topological lasers are more robust and can be immune to disorder or de-fects if lasing occurs in topologically protected states. Previously reported topological lasers were almost exclu-sively based on the first-order photonic topological insulators. Here, we show that lasing can be achieved in the zero-dimensional corner state in a second-order photonic topological insulator, which is based on Kagome wave-guide array with a rhombic configuration. If gain is present in the corner of the structure, where topological corner state resides, stable lasing in this state is achieved, with lowest possible threshold, in the presence of uniform loss-es and two-photon absorption. When gain acts in other corners of the structure, lasing may occur in edge or bulk states, but it requires substantially larger thresholds and transition to stable lasing occurs over much larger propa-gation distances, sometimes due to instabilities, which are absent for lasing in corner states. We find that increasing two-photon absorption generally plays strong stabilizing action for nonlinear lasing states. The transition to stable lasing stimulated by noisy inputs is illustrated. Our work demonstrates the realistic setting for corner state laser based on higher-order topological insulator realised with waveguide arrays.



rate research

Read More

80 - Aoqian Shi , Bei Yan , Rui Ge 2020
Topological corner state (TCS) and topological edge state (TES) have provided new approaches to control the propagation of light. The construction of topological coupled cavity-waveguide system (TCCWS) based on TCS and TES is worth looking forward to, due to its research prospects in realizing high-performance micro-nano integrated photonic devices. In this Letter, TCCWS is proposed in two-dimensional (2D) photonic crystal (PC), which possesses strong optical localization, high quality factor and excellent robustness compared with the conventional coupled cavity-waveguide system (CCCWS). This work will provide the possibility to design high-performance logic gates, lasers, filters and other micro-nano integrated photonics devices and expand their applications.
We report the first observation of lasing in topological edge states in a 1D Su-Schrieffer-Heeger active array of resonators. We show that in the presence of chiral-time ($mathcal{CT}$) symmetry, this non-Hermitian topological structure can experience complex phase transitions that alter the emission spectra as well as the ensued mode competition between edge and bulk states. The onset of these phase transitions is found to occur at the boundaries associated with the complex geometric phase- a generalized version of the Berry phase in Hermitian settings. Our experiments and theoretical analysis demonstrate that the topology of the system plays a key role in determining its operation when it lases: topologically controlled lasing.
153 - Xin Xie , Jianchen Dang , Sai Yan 2021
The second-order topological photonic crystal with 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for the further investigations and applications of the topological corner state, such as the investigation of strong coupling regime and the development of optical devices for topological nanophotonic circuitry.
162 - Juan Kang , Tao Liu , Mou Yan 2021
Recently, high-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of HOTIs, very recent works have explored the square-root HOTIs, where the topological nontrivial nature of bulk bands stems from the square of the Hamiltonian. In this paper, we experimentally demonstrate 2D square-root HOTIs in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. Edge and corner states are clearly observed through visible light spectra. The dynamical evolutions of topological boundary states are experimentally demonstrated, which further verify the existence of in-gap edge and corner states. The robustness of these edge and corner states is revealed by introducing defects and disorders into the bulk structures. Our studies provide an extended platform for realizing light manipulation and stable photonic devices.
132 - Xinbiao Xu , Linhao Ren , Lei Shi 2020
Propagation properties of light in optomechanical waveguides arrays (OMWAs) are studied for the first time, to the best of our knowledge. Due to the strong mechanical Kerr effect, the optical self-focusing and self-defocusing phenomena can be realized in the arrays of subwavelength dielectric optomechanical waveguides with the milliwatt-level incident powers and micrometer-level lengths. Compared with the conventional nonlinear waveguide arrays, the required incident powers and lengths of the waveguides are decreased by five orders of magnitude and one order of magnitude, respectively. Furthermore, by adjusting the deformation of the nanowaveguides through a control light, the propagation path of the signal light in the OMWA can be engineered, which could be used as a splitting-ratio-tunable beam splitter. This work provides a new platform for discrete optics and broadens the application of integrated optomechanics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا