Do you want to publish a course? Click here

Optimization and robustness of topological corner state in second-order topological photonic crystal

154   0   0.0 ( 0 )
 Added by Xiulai Xu Prof
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The second-order topological photonic crystal with 0D corner state provides a new way to investigate cavity quantum electrodynamics and develop topological nanophotonic devices with diverse functionalities. Here, we report on the optimization and robustness of topological corner state in the second-order topological photonic crystal both in theory and in experiment. The topological nanocavity is formed based on the 2D generalized Su-Schrieffer-Heeger model. The quality factor of corner state is optimized theoretically and experimentally by changing the gap between two photonic crystals or just modulating the position or size of the airholes surrounding the corner. The fabricated quality factors are further optimized by the surface passivation treatment which reduces surface absorption. A maximum quality factor of the fabricated devices is about 6000, which is the highest value ever reported for the active topological corner state. Furthermore, we demonstrate the robustness of corner state against strong disorders including the bulk defect, edge defect, and even corner defect. Our results lay a solid foundation for the further investigations and applications of the topological corner state, such as the investigation of strong coupling regime and the development of optical devices for topological nanophotonic circuitry.



rate research

Read More

Photonic crystal fibers represent one of the most active research fields in modern fiber optics. The recent advancements of topological photonics have inspired new fiber concepts and designs. Here, we demonstrate a new type of topological photonic crystal fibers based on second order photonic corner modes from the Su-Schrieffer-Heeger model. Different from previous works where the in-plane properties at $k_z=0$ have been mainly studied, we find that in the fiber configuration of $k_z>0$, a topological bandgap only exists when the propagation constant $k_z$ along the fiber axis is larger than a certain threshold and the emergent topological bandgap at large $k_z$ hosts two sets of corner fiber modes. We further investigate the propagation diagrams, propose a convenient way to tune the frequencies of the corner fiber modes within the topological bandgap and envisage multi-frequency and multi-channel transmission capabilities of this new type of fibers. Our work will not only have practical importance, but could also open a new area for fiber exploration where many existing higher-order topological photonic modes could bring exciting new opportunities for fiber designs and applications.
Recently, higher-order topological phases that do not obey the usual bulk-edge correspondence principle have been introduced in electronic insulators and brought into classical systems, featuring with in-gap corner/hinge states. So far, second-order topological insulators have been realized in mechanical metamaterials, microwave circuit, topolectrical circuit and acoustic metamaterials. Here, using near-field scanning measurements, we show the direct observation of corner states in second-order topological photonic crystal (PC) slabs consisting of periodic dielectric rods on a perfect electric conductor (PEC). Based on the generalized two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model, we show that the emergence of corner states roots in the nonzero edge dipolar polarization instead of the nonzero bulk quadrupole polarization. We demonstrate the topological transition of 2D Zak phases of PC slabs by tuning intra-cell distances between two neighboring rods. We also directly observe in-gap 1D edge states and 0D corner states in the microwave regime. Our work presents that the PC slab is a powerful platform to directly observe topological states, and paves the way to study higher-order photonic topological insulators.
The topological lasers, which are immune to imperfections and disorders, have been recently demonstrated based on many kinds of robust edge states, being mostly at microscale. The realization of 2D on-chip topological nanolasers, having the small footprint, low threshold and high energy efficiency, is still to be explored. Here, we report on the first experimental demonstration of the topological nanolaser with high performance in 2D photonic crystal slab. Based on the generalized 2D Su-Schrieffer-Heeger model, a topological nanocavity is formed with the help of the Wannier-type 0D corner state. Laser behaviors with low threshold about 1 $mu W$ and high spontaneous emission coupling factor of 0.25 are observed with quantum dots as the active material. Such performance is much better than that of topological edge lasers and comparable to conventional photonic crystal nanolasers. Our experimental demonstration of the low-threshold topological nanolaser will be of great significance to the development of topological nanophotonic circuitry for manipulation of photons in classical and quantum regimes.
Higher-order topological insulators (HOTI) are a novel topological phase beyond the framework of the conventional bulk-boundary correspondence. In these peculiar systems, the topologically nontrivial boundary modes are characterized by a co-dimension of at least two. Despite several promising preliminary considerations regarding the impact of nonlinearity in such systems, the flourishing field of experimental HOTI research has thus far been confined to the linear evolution of topological states. As such, the observation of the interplay between nonlinearity and the dynamics of higher-order topological phases in conservative systems remains elusive. In our work, we experimentally demonstrate nonlinear higher-order topological corner states. Our photonic platform enables us to observe nonlinear topological corner states as well as the formation of solitons in such topological structures. Our work paves the way towards the exploration of topological properties of matter in the nonlinear regime, and may herald a new class of compact devices that harnesses the intriguing features of topology in an on-demand fashion.
Topological photonics provides a new paradigm in studying cavity quantum electrodynamics with robustness to disorder. In this work, we demonstrate the coupling between single quantum dots and the second-order topological corner state. Based on the second-order topological corner state, a topological photonic crystal cavity is designed and fabricated into GaAs slabs with quantum dots embedded. The coexistence of corner state and edge state with high quality factor close to 2000 is observed. The enhancement of photoluminescence intensity and emission rate are both observed when the quantum dot is on resonance with the corner state. This result enables the application of topology into cavity quantum electrodynamics, offering an approach to topological devices for quantum information processing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا