Do you want to publish a course? Click here

Observation of Square-Root Higher-Order Topological States in Photonic Waveguide Arrays

163   0   0.0 ( 0 )
 Added by Juan Kang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently, high-order topological insulators (HOTIs), accompanied by topologically nontrivial boundary states with codimension larger than one, have been extensively explored because of unconventional bulk-boundary correspondences. As a novel type of HOTIs, very recent works have explored the square-root HOTIs, where the topological nontrivial nature of bulk bands stems from the square of the Hamiltonian. In this paper, we experimentally demonstrate 2D square-root HOTIs in photonic waveguide arrays written in glass using femtosecond laser direct-write techniques. Edge and corner states are clearly observed through visible light spectra. The dynamical evolutions of topological boundary states are experimentally demonstrated, which further verify the existence of in-gap edge and corner states. The robustness of these edge and corner states is revealed by introducing defects and disorders into the bulk structures. Our studies provide an extended platform for realizing light manipulation and stable photonic devices.



rate research

Read More

Higher-order topological insulators (HOTIs) are recently discovered topological phases, possessing symmetry-protected corner states with fractional charges. An unexpected connection between these states and the seemingly unrelated phenomenon of bound states in the continuum (BICs) was recently unveiled. When nonlinearity is added to a HOTI system, a number of fundamentally important questions arise. For example, how does nonlinearity couple higher-order topological BICs with the rest of the system, including continuum states? In fact, thus far BICs in nonlinear HOTIs have remained unexplored. Here, we demonstrate the interplay of nonlinearity, higher-order topology, and BICs in a photonic platform. We observe topological corner states which, serendipitously, are also BICs in a laser-written second-order topological lattice. We further demonstrate nonlinear coupling with edge states at a low nonlinearity, transitioning to solitons at a high nonlinearity. Theoretically, we calculate the analog of the Zak phase in the nonlinear regime, illustrating that a topological BIC can be actively tuned by both focusing and defocusing nonlinearities. Our studies are applicable to other nonlinear HOTI systems, with promising applications in emerging topology-driven devices.
We present an analytical theory of topologically protected photonic states for the two-dimensional Maxwell equations for a class of continuous periodic dielectric structures, modulated by a domain wall. We further numerically confirm the applicability of this theory for three-dimensional structures.
Square-root topological insulators are recently-proposed intriguing topological insulators, where the topologically nontrivial nature of Bloch wave functions is inherited from the square of the Hamiltonian. In this paper, we propose that higher-order topological insulators can also have their square-root descendants, which we term square-root higher-order topological insulators. There, emergence of in-gap corner states is inherited from the squared Hamiltonian which hosts higher-order topology. As an example of such systems, we investigate the tight-binding model on a decorated honeycomb lattice, whose squared Hamiltonian includes a breathing kagome-lattice model, a well-known example of higher-order topological insulators. We show that the in-gap corner states appear at finite energies, which coincides with the non-trivial bulk polarization. We further show that the existence of in-gap corner states results in characteristic single-particle dynamics, namely, setting the initial state to be localized at the corner, the particle stays at the corner even after a long time. Such characteristic dynamics may experimentally be detectable in photonic crystals.
Photonic topological states have revolutionized our understanding on the propagation and scattering of light. Recent discovery of higher-order photonic topological insulators opens an emergent horizon for zero-dimensional topological corner states. However, the previous realizations of higher-order photonic topological insulators suffer from either a limited operational frequency range due to the lumped components involved or a bulky structure with a large footprint, which are unfavorable for future integrated photonics. To overcome these limitations, we hereby experimentally demonstrate a planar surface-wave photonic crystal realization of two-dimensional higher-order topological insulators. The surface-wave photonic crystals exhibit a very large bulk bandgap (a bandwidth of 28%) due to multiple Bragg scatterings and host one-dimensional gapped edge states described by massive Dirac equations. The topology of those higher-dimensional photonic bands leads to the emergence of zero-dimensional corner states, which provide a route toward robust cavity modes for scalable, integrated photonic chips and an interface for the control of light-matter interaction.
We experimentally demonstrate topological edge states arising from the valley-Hall effect in twodimensional honeycomb photonic lattices with broken inversion symmetry. We break inversion symmetry by detuning the refractive indices of the two honeycomb sublattices, giving rise to a boron nitride-like band structure. The edge states therefore exist along the domain walls between regions of opposite valley Chern numbers. We probe both the armchair and zig-zag domain walls and show that the former become gapped for any detuning, whereas the latter remain ungapped until a cutoff is reached. The valley-Hall effect provides a new mechanism for the realization of time-reversal invariant photonic topological insulators.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا