Do you want to publish a course? Click here

Discrete optics in optomechanical waveguide arrays

133   0   0.0 ( 0 )
 Added by Xinbiao Xu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Propagation properties of light in optomechanical waveguides arrays (OMWAs) are studied for the first time, to the best of our knowledge. Due to the strong mechanical Kerr effect, the optical self-focusing and self-defocusing phenomena can be realized in the arrays of subwavelength dielectric optomechanical waveguides with the milliwatt-level incident powers and micrometer-level lengths. Compared with the conventional nonlinear waveguide arrays, the required incident powers and lengths of the waveguides are decreased by five orders of magnitude and one order of magnitude, respectively. Furthermore, by adjusting the deformation of the nanowaveguides through a control light, the propagation path of the signal light in the OMWA can be engineered, which could be used as a splitting-ratio-tunable beam splitter. This work provides a new platform for discrete optics and broadens the application of integrated optomechanics.



rate research

Read More

We study the influences to the discrete soliton (DS) by introducing linearly long-range nonlocal interactions, which give rise to the off-diagonal elements of the linearly coupled matrix in the discrete nonlinear schrodinger equation to be filled by non-zero terms. Theoretical analysis and numerical simulations find that the DS under this circumstance can exhibit strong digital effects: the fundamental DS is a narrow one, which occupies nearly only one waveguide, the dipole and double-monopole solitons, which occupy two waveguides, can be found in self-focusing and -defocusing nonlinearities, respectively. Stable flat-top solitons and their stagger counterparts, which occupy a controllable number of waveguides, can also be obtained through this system. Such digital properties may give rise to additional data processing applications and have potential in fabricating digital optical devices in all-optical networks.
The mechanical properties of light have found widespread use in the manipulation of gas-phase atoms and ions, helping create new states of matter and realize complex quantum interactions. The field of cavity-optomechanics strives to scale this interaction to much larger, even human-sized mechanical objects. Going beyond the canonical Fabry-Perot cavity with a movable mirror, here we explore a new paradigm in which multiple cavity-optomechanical elements are wired together to form optomechanical circuits. Using a pair of optomechanical cavities coupled together via a phonon waveguide we demonstrate a tunable delay and filter for microwave-over-optical signal processing. In addition, we realize a tight-binding form of mechanical coupling between distant optomechanical cavities, leading to direct phonon exchange without dissipation in the waveguide. These measurements indicate the feasibility of phonon-routing based information processing in optomechanical crystal circuitry, and further, to the possibility of realizing topological phases of photons and phonons in optomechanical cavity lattices.
We present a semi-analytical formulation for calculating the supermodes and corresponding Bloch factors of light in hexagonal lattice photonic crystal waveguide arrays. We then use this formulation to easily calculate dispersion curves and predict propagation in systems too large to calculate using standard numerical methods.
We report the observation of surface solitons in chirped semi-infinite waveguide arrays whose waveguides exhibit exponentially decreasing refractive indices. We show that the power threshold for surface wave formation decreases with an increase of the array chirp and that for sufficiently large chirp values linear surface modes are supported.
We investigate theoretically the generation of nonlinear dissipative structures in optomechanical (OM) systems containing discrete arrays of mechanical resonators. We consider both hybrid models in which the optical system is a continuous multimode field, as it would happen in an OM cavity containing an array of micro-mirrors, and also fully discrete models in which each mechanical resonator interacts with a single optical mode, making contact with Ludwig & Marquardt [Phys. Rev. Lett. 101, 073603 (2013)]. Also, we study the connections between both types of models and continuous OM models. While all three types of models merge naturally in the limit of a large number of densely distributed mechanical resonators, we show that the spatial localization and the pattern formation found in continuous OM models can be still observed for a small number of mechanical elements, even in the presence of finite-size effects, which we discuss. This opens new venues for experimental approaches to the subject.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا