Do you want to publish a course? Click here

Few-Shot Conversational Dense Retrieval

91   0   0.0 ( 0 )
 Added by Shi Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Dense retrieval (DR) has the potential to resolve the query understanding challenge in conversational search by matching in the learned embedding space. However, this adaptation is challenging due to DR models extra needs for supervision signals and the long-tail nature of conversational search. In this paper, we present a Conversational Dense Retrieval system, ConvDR, that learns contextualized embeddings for multi-turn conversational queries and retrieves documents solely using embedding dot products. In addition, we grant ConvDR few-shot ability using a teacher-student framework, where we employ an ad hoc dense retriever as the teacher, inherit its document encodings, and learn a student query encoder to mimic the teacher embeddings on oracle reformulated queries. Our experiments on TREC CAsT and OR-QuAC demonstrate ConvDRs effectiveness in both few-shot and fully-supervised settings. It outperforms previous systems that operate in the sparse word space, matches the retrieval accuracy of oracle query reformulations, and is also more efficient thanks to its simplicity. Our analyses reveal that the advantages of ConvDR come from its ability to capture informative context while ignoring the unrelated context in previous conversation rounds. This makes ConvDR more effective as conversations evolve while previous systems may get confused by the increased noise from previous turns. Our code is publicly available at https://github.com/thunlp/ConvDR.



rate research

Read More

107 - Chen Qu , Liu Yang , Cen Chen 2021
Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that the span-match weak supervisor can only handle conversations with span answers, and has less satisfactory results for freeform answers generated by people. Our method is more flexible as it can handle both span answers and freeform answers. Moreover, our method can be more powerful when combined with the span-match method which shows it is complementary to the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting.
Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised language models such as BERT, but also to use such models to identify documents from the collection in the first place. However, when using dense retrieval approaches that use multiple embedded representations for each query, a large number of documents can be retrieved for each query, hindering the efficiency of the method. Hence, this work is the first to consider efficiency improvements in the context of a dense retrieval approach (namely ColBERT), by pruning query term embeddings that are estimated not to be useful for retrieving relevant documents. Our proposed query embeddings pruning reduces the cost of the dense retrieval operation, as well as reducing the number of documents that are retrieved and hence require to be fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, when reducing the number of query embeddings used from 32 to 3 based on the collection frequency of the corresponding tokens, query embedding pruning results in no statistically significant differences in effectiveness, while reducing the number of documents retrieved by 70%. In terms of mean response time for the end-to-end to end system, this results in a 2.65x speedup.
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under different retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.
This paper describes the participation of UvA.ILPS group at the TREC CAsT 2020 track. Our passage retrieval pipeline consists of (i) an initial retrieval module that uses BM25, and (ii) a re-ranking module that combines the score of a BERT ranking model with the score of a machine comprehension model adjusted for passage retrieval. An important challenge in conversational passage retrieval is that queries are often under-specified. Thus, we perform query resolution, that is, add missing context from the conversation history to the current turn query using QuReTeC, a term classification query resolution model. We show that our best automatic and manual runs outperform the corresponding median runs by a large margin.
Passage retrieval addresses the problem of locating relevant passages, usually from a large corpus, given a query. In practice, lexical term-matching algorithms like BM25 are popular choices for retrieval owing to their efficiency. However, term-based matching algorithms often miss relevant passages that have no lexical overlap with the query and cannot be finetuned to downstream datasets. In this work, we consider the embedding-based two-tower architecture as our neural retrieval model. Since labeled data can be scarce and because neural retrieval models require vast amounts of data to train, we propose a novel method for generating synthetic training data for retrieval. Our system produces remarkable results, significantly outperforming BM25 on 5 out of 6 datasets tested, by an average of 2.45 points for Recall@1. In some cases, our model trained on synthetic data can even outperform the same model trained on real data
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا