Do you want to publish a course? Click here

Query Embedding Pruning for Dense Retrieval

317   0   0.0 ( 0 )
 Added by Craig Macdonald
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent advances in dense retrieval techniques have offered the promise of being able not just to re-rank documents using contextualised language models such as BERT, but also to use such models to identify documents from the collection in the first place. However, when using dense retrieval approaches that use multiple embedded representations for each query, a large number of documents can be retrieved for each query, hindering the efficiency of the method. Hence, this work is the first to consider efficiency improvements in the context of a dense retrieval approach (namely ColBERT), by pruning query term embeddings that are estimated not to be useful for retrieving relevant documents. Our proposed query embeddings pruning reduces the cost of the dense retrieval operation, as well as reducing the number of documents that are retrieved and hence require to be fully scored. Experiments conducted on the MSMARCO passage ranking corpus demonstrate that, when reducing the number of query embeddings used from 32 to 3 based on the collection frequency of the corresponding tokens, query embedding pruning results in no statistically significant differences in effectiveness, while reducing the number of documents retrieved by 70%. In terms of mean response time for the end-to-end to end system, this results in a 2.65x speedup.



rate research

Read More

Passage retrieval addresses the problem of locating relevant passages, usually from a large corpus, given a query. In practice, lexical term-matching algorithms like BM25 are popular choices for retrieval owing to their efficiency. However, term-based matching algorithms often miss relevant passages that have no lexical overlap with the query and cannot be finetuned to downstream datasets. In this work, we consider the embedding-based two-tower architecture as our neural retrieval model. Since labeled data can be scarce and because neural retrieval models require vast amounts of data to train, we propose a novel method for generating synthetic training data for retrieval. Our system produces remarkable results, significantly outperforming BM25 on 5 out of 6 datasets tested, by an average of 2.45 points for Recall@1. In some cases, our model trained on synthetic data can even outperform the same model trained on real data
Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a challenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
Recently, the retrieval models based on dense representations have been gradually applied in the first stage of the document retrieval tasks, showing better performance than traditional sparse vector space models. To obtain high efficiency, the basic structure of these models is Bi-encoder in most cases. However, this simple structure may cause serious information loss during the encoding of documents since the queries are agnostic. To address this problem, we design a method to mimic the queries on each of the documents by an iterative clustering process and represent the documents by multiple pseudo queries (i.e., the cluster centroids). To boost the retrieval process using approximate nearest neighbor search library, we also optimize the matching function with a two-step score calculation procedure. Experimental results on several popular ranking and QA datasets show that our model can achieve state-of-the-art results.
Feature fusion is a commonly used strategy in image retrieval tasks, which aggregates the matching responses of multiple visual features. Feasible sets of features can be either descriptors (SIFT, HSV) for an entire image or the same descriptor for different local parts (face, body). Ideally, the to-be-fused heterogeneous features are pre-assumed to be discriminative and complementary to each other. However, the effectiveness of different features varies dramatically according to different queries. That is to say, for some queries, a feature may be neither discriminative nor complementary to existing ones, while for other queries, the feature suffices. As a result, it is important to estimate the effectiveness of features in a query-adaptive manner. To this end, this article proposes a new late fusion scheme at the score level. We base our method on the observation that the sorted score curves contain patterns that describe their effectiveness. For example, an L-shaped curve indicates that the feature is discriminative while a gradually descending curve suggests a bad feature. As such, this paper introduces a query-adaptive late fusion pipeline. In the hand-crafted version, it can be an unsupervised approach to tasks like particular object retrieval. In the learning version, it can also be applied to supervised tasks like person recognition and pedestrian retrieval, based on a trainable neural module. Extensive experiments are conducted on two object retrieval datasets and one person recognition dataset. We show that our method is able to highlight the good features and suppress the bad ones, is resilient to distractor features, and achieves very competitive retrieval accuracy compared with the state of the art. In an additional person re-identification dataset, the application scope and limitation of the proposed method are studied.
The Transformer-Kernel (TK) model has demonstrated strong reranking performance on the TREC Deep Learning benchmark---and can be considered to be an efficient (but slightly less effective) alternative to BERT-based ranking models. In this work, we extend the TK architecture to the full retrieval setting by incorporating the query term independence assumption. Furthermore, to reduce the memory complexity of the Transformer layers with respect to the input sequence length, we propose a new Conformer layer. We show that the Conformers GPU memory requirement scales linearly with input sequence length, making it a more viable option when ranking long documents. Finally, we demonstrate that incorporating explicit term matching signal into the model can be particularly useful in the full retrieval setting. We present preliminary results from our work in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا