Do you want to publish a course? Click here

A Comparison of Question Rewriting Methods for Conversational Passage Retrieval

107   0   0.0 ( 0 )
 Added by Nikos Voskarides
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under different retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.



rate research

Read More

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
107 - Chen Qu , Liu Yang , Cen Chen 2021
Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that the span-match weak supervisor can only handle conversations with span answers, and has less satisfactory results for freeform answers generated by people. Our method is more flexible as it can handle both span answers and freeform answers. Moreover, our method can be more powerful when combined with the span-match method which shows it is complementary to the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting.
This paper describes the participation of UvA.ILPS group at the TREC CAsT 2020 track. Our passage retrieval pipeline consists of (i) an initial retrieval module that uses BM25, and (ii) a re-ranking module that combines the score of a BERT ranking model with the score of a machine comprehension model adjusted for passage retrieval. An important challenge in conversational passage retrieval is that queries are often under-specified. Thus, we perform query resolution, that is, add missing context from the conversation history to the current turn query using QuReTeC, a term classification query resolution model. We show that our best automatic and manual runs outperform the corresponding median runs by a large margin.
90 - Chen Qu , Hamed Zamani , Liu Yang 2021
In this work, we address multi-modal information needs that contain text questions and images by focusing on passage retrieval for outside-knowledge visual question answering. This task requires access to outside knowledge, which in our case we define to be a large unstructured passage collection. We first conduct sparse retrieval with BM25 and study expanding the question with object names and image captions. We verify that visual clues play an important role and captions tend to be more informative than object names in sparse retrieval. We then construct a dual-encoder dense retriever, with the query encoder being LXMERT, a multi-modal pre-trained transformer. We further show that dense retrieval significantly outperforms sparse retrieval that uses object expansion. Moreover, dense retrieval matches the performance of sparse retrieval that leverages human-generated captions.
We analyse the performance of passage retrieval models in the presence of complex (multi-hop) questions to provide a better understanding of how retrieval systems behave when multiple hops of reasoning are needed. In simple open-domain question answering (QA), dense passage retrieval has become one of the standard approaches for retrieving the relevant passages to infer an answer. Recently, dense passage retrieval also achieved state-of-the-art results in multi-hop QA, where aggregating information from multiple documents and reasoning over them is required. However, so far, the dense retrieval models are not evaluated properly concerning the multi-hop nature of the problem: models are typically evaluated by the end result of the retrieval pipeline, which leaves unclear where their success lies. In this work, we provide an in-depth evaluation of such models not only unveiling the reasons behind their success but also their limitations. Moreover, we introduce a hybrid (lexical and dense) retrieval approach that is highly competitive with the state-of-the-art dense retrieval model, while requiring substantially less computational resources. Furthermore, we also perform qualitative analysis to better understand the challenges behind passage retrieval for multi-hop QA.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا