Do you want to publish a course? Click here

Weakly-Supervised Open-Retrieval Conversational Question Answering

108   0   0.0 ( 0 )
 Added by Chen Qu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recent studies on Question Answering (QA) and Conversational QA (ConvQA) emphasize the role of retrieval: a system first retrieves evidence from a large collection and then extracts answers. This open-retrieval ConvQA setting typically assumes that each question is answerable by a single span of text within a particular passage (a span answer). The supervision signal is thus derived from whether or not the system can recover an exact match of this ground-truth answer span from the retrieved passages. This method is referred to as span-match weak supervision. However, information-seeking conversations are challenging for this span-match method since long answers, especially freeform answers, are not necessarily strict spans of any passage. Therefore, we introduce a learned weak supervision approach that can identify a paraphrased span of the known answer in a passage. Our experiments on QuAC and CoQA datasets show that the span-match weak supervisor can only handle conversations with span answers, and has less satisfactory results for freeform answers generated by people. Our method is more flexible as it can handle both span answers and freeform answers. Moreover, our method can be more powerful when combined with the span-match method which shows it is complementary to the span-match method. We also conduct in-depth analyses to show more insights on open-retrieval ConvQA under a weak supervision setting.



rate research

Read More

We introduce a new dataset for Question Rewriting in Conversational Context (QReCC), which contains 14K conversations with 80K question-answer pairs. The task in QReCC is to find answers to conversational questions within a collection of 10M web pages (split into 54M passages). Answers to questions in the same conversation may be distributed across several web pages. QReCC provides annotations that allow us to train and evaluate individual subtasks of question rewriting, passage retrieval and reading comprehension required for the end-to-end conversational question answering (QA) task. We report the effectiveness of a strong baseline approach that combines the state-of-the-art model for question rewriting, and competitive models for open-domain QA. Our results set the first baseline for the QReCC dataset with F1 of 19.10, compared to the human upper bound of 75.45, indicating the difficulty of the setup and a large room for improvement.
Conversational passage retrieval relies on question rewriting to modify the original question so that it no longer depends on the conversation history. Several methods for question rewriting have recently been proposed, but they were compared under different retrieval pipelines. We bridge this gap by thoroughly evaluating those question rewriting methods on the TREC CAsT 2019 and 2020 datasets under the same retrieval pipeline. We analyze the effect of different types of question rewriting methods on retrieval performance and show that by combining question rewriting methods of different types we can achieve state-of-the-art performance on both datasets.
The rise of personal assistants has made conversational question answering (ConvQA) a very popular mechanism for user-system interaction. State-of-the-art methods for ConvQA over knowledge graphs (KGs) can only learn from crisp question-answer pairs found in popular benchmarks. In reality, however, such training data is hard to come by: users would rarely mark answers explicitly as correct or wrong. In this work, we take a step towards a more natural learning paradigm - from noisy and implicit feedback via question reformulations. A reformulation is likely to be triggered by an incorrect system response, whereas a new follow-up question could be a positive signal on the previous turns answer. We present a reinforcement learning model, termed CONQUER, that can learn from a conversational stream of questions and reformulations. CONQUER models the answering process as multiple agents walking in parallel on the KG, where the walks are determined by actions sampled using a policy network. This policy network takes the question along with the conversational context as inputs and is trained via noisy rewards obtained from the reformulation likelihood. To evaluate CONQUER, we create and release ConvRef, a benchmark with about 11k natural conversations containing around 205k reformulations. Experiments show that CONQUER successfully learns to answer conversational questions from noisy reward signals, significantly improving over a state-of-the-art baseline.
Vision-and-language (V&L) reasoning necessitates perception of visual concepts such as objects and actions, understanding semantics and language grounding, and reasoning about the interplay between the two modalities. One crucial aspect of visual reasoning is spatial understanding, which involves understanding relative locations of objects, i.e. implicitly learning the geometry of the scene. In this work, we evaluate the faithfulness of V&L models to such geometric understanding, by formulating the prediction of pair-wise relative locations of objects as a classification as well as a regression task. Our findings suggest that state-of-the-art transformer-based V&L models lack sufficient abilities to excel at this task. Motivated by this, we design two objectives as proxies for 3D spatial reasoning (SR) -- object centroid estimation, and relative position estimation, and train V&L with weak supervision from off-the-shelf depth estimators. This leads to considerable improvements in accuracy for the GQA visual question answering challenge (in fully supervised, few-shot, and O.O.D settings) as well as improvements in relative spatial reasoning. Code and data will be released href{https://github.com/pratyay-banerjee/weak_sup_vqa}{here}.
Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the users inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا