Do you want to publish a course? Click here

MS MARCO: Benchmarking Ranking Models in the Large-Data Regime

236   0   0.0 ( 0 )
 Added by Bhaskar Mitra
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Evaluation efforts such as TREC, CLEF, NTCIR and FIRE, alongside public leaderboard such as MS MARCO, are intended to encourage research and track our progress, addressing big questions in our field. However, the goal is not simply to identify which run is best, achieving the top score. The goal is to move the field forward by developing new robust techniques, that work in many different settings, and are adopted in research and practice. This paper uses the MS MARCO and TREC Deep Learning Track as our case study, comparing it to the case of TREC ad hoc ranking in the 1990s. We show how the design of the evaluation effort can encourage or discourage certain outcomes, and raising questions about internal and external validity of results. We provide some analysis of certain pitfalls, and a statement of best practices for avoiding such pitfalls. We summarize the progress of the effort so far, and describe our desired end state of robust usefulness, along with steps that might be required to get us there.



rate research

Read More

The MS MARCO ranking dataset has been widely used for training deep learning models for IR tasks, achieving considerable effectiveness on diverse zero-shot scenarios. However, this type of resource is scarce in other languages than English. In this work we present mMARCO, a multilingual version of the MS MARCO passage ranking dataset comprising 8 languages that was created using machine translation. We evaluated mMARCO by fine-tuning mono and multilingual re-ranking models on it. Experimental results demonstrate that multilingual models fine-tuned on our translated dataset achieve superior effectiveness than models fine-tuned on the original English version alone. Also, our distilled multilingual re-ranker is competitive with non-distilled models while having 5.4 times fewer parameters. The translated datasets as well as fine-tuned models are available at https://github.com/unicamp-dl/mMARCO.git.
Leaderboards are a ubiquitous part of modern research in applied machine learning. By design, they sort entries into some linear order, where the top-scoring entry is recognized as the state of the art (SOTA). Due to the rapid progress being made in information retrieval today, particularly with neural models, the top entry in a leaderboard is replaced with some regularity. These are touted as improvements in the state of the art. Such pronouncements, however, are almost never qualified with significance testing. In the context of the MS MARCO document ranking leaderboard, we pose a specific question: How do we know if a run is significantly better than the current SOTA? We ask this question against the backdrop of recent IR debates on scale types: in particular, whether commonly used significance tests are even mathematically permissible. Recognizing these potential pitfalls in evaluation methodology, our study proposes an evaluation framework that explicitly treats certain outcomes as distinct and avoids aggregating them into a single-point metric. Empirical analysis of SOTA runs from the MS MARCO document ranking leaderboard reveals insights about how one run can be significantly better than another that are obscured by the current official evaluation metric (MRR@100).
The TREC Deep Learning (DL) Track studies ad hoc search in the large data regime, meaning that a large set of human-labeled training data is available. Results so far indicate that the best models with large data may be deep neural networks. This paper supports the reuse of the TREC DL test collections in three ways. First we describe the data sets in detail, documenting clearly and in one place some details that are otherwise scattered in track guidelines, overview papers and in our associated MS MARCO leaderboard pages. We intend this description to make it easy for newcomers to use the TREC DL data. Second, because there is some risk of iteration and selection bias when reusing a data set, we describe the best practices for writing a paper using TREC DL data, without overfitting. We provide some illustrative analysis. Finally we address a number of issues around the TREC DL data, including an analysis of reusability.
Multi-stage cascade architecture exists widely in many industrial systems such as recommender systems and online advertising, which often consists of sequential modules including matching, pre-ranking, ranking, etc. For a long time, it is believed pre-ranking is just a simplified version of the ranking module, considering the larger size of the candidate set to be ranked. Thus, efforts are made mostly on simplifying ranking model to handle the explosion of computing power for online inference. In this paper, we rethink the challenge of the pre-ranking system from an algorithm-system co-design view. Instead of saving computing power with restriction of model architecture which causes loss of model performance, here we design a new pre-ranking system by joint optimization of both the pre-ranking model and the computing power it costs. We name it COLD (Computing power cost-aware Online and Lightweight Deep pre-ranking system). COLD beats SOTA in three folds: (i) an arbitrary deep model with cross features can be applied in COLD under a constraint of controllable computing power cost. (ii) computing power cost is explicitly reduced by applying optimization tricks for inference acceleration. This further brings space for COLD to apply more complex deep models to reach better performance. (iii) COLD model works in an online learning and severing manner, bringing it excellent ability to handle the challenge of the data distribution shift. Meanwhile, the fully online pre-ranking system of COLD provides us with a flexible infrastructure that supports efficient new model developing and online A/B testing.Since 2019, COLD has been deployed in almost all products involving the pre-ranking module in the display advertising system in Alibaba, bringing significant improvements.
Manifold ranking has been successfully applied in query-oriented multi-document summarization. It not only makes use of the relationships among the sentences, but also the relationships between the given query and the sentences. However, the information of original query is often insufficient. So we present a query expansion method, which is combined in the manifold ranking to resolve this problem. Our method not only utilizes the information of the query term itself and the knowledge base WordNet to expand it by synonyms, but also uses the information of the document set itself to expand the query in various ways (mean expansion, variance expansion and TextRank expansion). Compared with the previous query expansion methods, our method combines multiple query expansion methods to better represent query information, and at the same time, it makes a useful attempt on manifold ranking. In addition, we use the degree of word overlap and the proximity between words to calculate the similarity between sentences. We performed experiments on the datasets of DUC 2006 and DUC2007, and the evaluation results show that the proposed query expansion method can significantly improve the system performance and make our system comparable to the state-of-the-art systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا