No Arabic abstract
We use the galaxy rotation curves in the SPARC database to compare 9 different dark matter and modified gravity models on an equal footing, paying special attention to the stellar mass-to-light ratios. We compare three non-interacting dark matter models, a self interacting DM (SIDM) model, two hadronically interacting DM (HIDM) models, and three modified Newtonian dynamics type models: MOND, Radial Acceleration Relation (RAR) and a maximal-disk model. The models with DM-gas interactions generate a disky component in the dark matter, which significantly improves the fits to the rotation curves compared to all other models except an Einasto halo; the MOND-type models give significantly worse fits.
Dark matter-baryon scaling relations in galaxies are important in order to constrain galaxy formation models. Here, we provide a modern quantitative assessment of those relations, by modelling the rotation curves of galaxies from the Spitzer Photometry and Accurate Rotation Curves (SPARC) database with the Einasto dark halo model. We focus in particular on the comparison between the original SPARC parameters, with constant mass-to-light ratios for bulges and disks, and the parameters for which galaxies follow the tightest radial acceleration relation. We show that fits are improved in the second case, and that the pure halo scaling relations also become tighter. We report that the density at the radius where the slope is -2 is strongly anticorrelated to this radius, and to the Einasto index. The latter is close to unity for a large number of galaxies, indicative of large cores. In terms of dark matter-baryon scalings, we focus on relations between the core properties and the extent of the baryonic component, which are relevant to the cusp-core transformation process. We report a positive correlation between the core size of halos with small Einasto index and the stellar disk scale-length, as well as between the averaged dark matter density within 2 kpc and the baryon-induced rotational velocity at that radius. This finding is related to the consequence of the radial acceleration relation on the diversity of rotation curve shapes, quantified by the rotational velocity at 2 kpc. While a tight radial acceleration relation slightly decreases the observed diversity compared to the original SPARC parameters, the diversity of baryon-induced accelerations at 2 kpc is sufficient to induce a large diversity, incompatible with current hydrodynamical simulations of galaxy formation, while maintaining a tight radial acceleration relation.
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of applying these methods. Recent observations and models of the very inner central parts of galaxian rotation curves are only briefly described. I then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Application of modified Newtonian dynamics to the outer parts of disk galaxies is then described. Finally, attempts to apply Einsteinian general relativity to the dynamics are summarized. The article ends with a summary and prospects for further work in this area.
A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to heavy leptons either the self-interaction may not be strong enough to solve the small scale structure motivation or a dark disk cannot be present in the Milky Way.
We use N-body hydrodynamical simulations to study the structure of disks in triaxial potentials resembling CDM halos. Our analysis focuses on the accuracy of the dark mass distribution inferred from rotation curves derived from simulated long-slit spectra. We consider a massless disk embedded in a halo with axis ratios of 0.5:0.6:1.0 and with its rotation axis aligned with the minor axis of the halo. Closed orbits for the gaseous particles deviate from coplanar circular symmetry, resulting in a variety of long-slit rotation curve shapes, depending on the orientation of the disk relative to the line of sight. Rotation curves may thus differ significantly from the spherically-averaged circular velocity profile of the dark matter halo. Solid-body rotation curves--typically interpreted as a signature of a constant density core in the dark matter distribution--are obtained about 25% of the time for random orientations although the dark matter follows the cuspy density profile proposed by Navarro, Frenk & White (NFW). We conclude that the discrepancies reported between the shape of the rotation curve of low surface brightness galaxies and the structure of CDM halos may be resolved once the complex effects of halo triaxiality on the dynamics of the gas component is properly taken into account.
We use a semianalytic approach that is calibrated to N-body simulations to study the evolution of self-interacting dark matter cores in galaxies. We demarcate the regime where the temporal evolution of the core density follows a well-defined track set by the initial halo parameters and the cross section. Along this track, the central density reaches a minimum value set by the initial halo density. Further evolution leads to an outward heat transfer, inducing gravothermal core collapse such that the core shrinks as its density increases. We show that the time scale for the core collapse is highly sensitive to the outer radial density profile. Satellite galaxies with significant mass loss due to tidal stripping should have larger central densities and significantly faster core collapse compared to isolated halos. Such a scenario could explain the dense and compact cores of dwarf galaxies in the Local Group like Tucana (isolated from the Milky Way), the classical Milky Way satellite Draco, and some of the ultrafaint satellites. If the ultimate fate of core collapse is black hole formation, then the accelerated time scale provides a new mechanism for creating intermediate mass black holes.