No Arabic abstract
We use N-body hydrodynamical simulations to study the structure of disks in triaxial potentials resembling CDM halos. Our analysis focuses on the accuracy of the dark mass distribution inferred from rotation curves derived from simulated long-slit spectra. We consider a massless disk embedded in a halo with axis ratios of 0.5:0.6:1.0 and with its rotation axis aligned with the minor axis of the halo. Closed orbits for the gaseous particles deviate from coplanar circular symmetry, resulting in a variety of long-slit rotation curve shapes, depending on the orientation of the disk relative to the line of sight. Rotation curves may thus differ significantly from the spherically-averaged circular velocity profile of the dark matter halo. Solid-body rotation curves--typically interpreted as a signature of a constant density core in the dark matter distribution--are obtained about 25% of the time for random orientations although the dark matter follows the cuspy density profile proposed by Navarro, Frenk & White (NFW). We conclude that the discrepancies reported between the shape of the rotation curve of low surface brightness galaxies and the structure of CDM halos may be resolved once the complex effects of halo triaxiality on the dynamics of the gas component is properly taken into account.
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of applying these methods. Recent observations and models of the very inner central parts of galaxian rotation curves are only briefly described. I then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Application of modified Newtonian dynamics to the outer parts of disk galaxies is then described. Finally, attempts to apply Einsteinian general relativity to the dynamics are summarized. The article ends with a summary and prospects for further work in this area.
We construct self-consistent dynamical models for disk galaxies with triaxial, cuspy halos. We begin with an equilibrium, axisymmetric, disk-bulge-halo system and apply an artificial acceleration to the halo particles. By design, this acceleration conserves energy and thereby preserving the systems differential energy distribution even as its phase space distribution function is altered. The halo becomes triaxial but its spherically-averaged density profile remains largely unchanged. The final system is in equilibrium, to a very good approximation, so long as the halos shape changes adiabatically. The disk and bulge are ``live while the halo is being deformed; they respond to the changing gravitational potential but also influence the deformation of the halo. We test the hypothesis that halo triaxiality can explain the rotation curves of low surface brightness galaxies by modelling the galaxy F568-3.
We use the galaxy rotation curves in the SPARC database to compare 9 different dark matter and modified gravity models on an equal footing, paying special attention to the stellar mass-to-light ratios. We compare three non-interacting dark matter models, a self interacting DM (SIDM) model, two hadronically interacting DM (HIDM) models, and three modified Newtonian dynamics type models: MOND, Radial Acceleration Relation (RAR) and a maximal-disk model. The models with DM-gas interactions generate a disky component in the dark matter, which significantly improves the fits to the rotation curves compared to all other models except an Einasto halo; the MOND-type models give significantly worse fits.
We study the behaviors of galactic disks in triaxial halos both numerically and analytically to see if warps can be excited and sustained in triaxial potentials. We consider the following two scenarios: 1) galactic disks that are initially tilted relative to the equatorial plane of the halo (for a pedagogical purpose), and 2) tilted infall of dark matter relative to the equatorial plane of the disk and the halo. With numerical simulations of 100,000 disk particles in a fixed halo potential, we find that in triaxial halos, warps can be excited and sustained just as in spherical or axisymmetric halos but they show some oscillatory behaviors and even can be transformed to a polar-ring system if the halo has a prolate-like triaxiality. The non-axisymmetric component of the halo causes the disk to nutate, and the differential nutation between the inner and outer parts of the disk generally makes the magnitude of the warp slightly diminish and fluctuate. We also find that warps are relatively weaker in oblate and oblate-like triaxial halos, and since these halos are the halo configurations of disk galaxies inferred by cosmological simulations, our results are consistent with the fact that most of the observed warps are quite weak. We derive approximate formulae for the torques exerted on the disk by the triaxial halo and the dark matter torus, and with these formulae we successfully describe the behaviors of the disks in our simulations. The techniques used in deriving these formulae could be applied for realistic halos with more complex structures.
A homogeneous sample of ~2200 low redshift disk galaxies with both high sensitivity long-slit optical spectroscopy and detailed I-band photometry is used to construct average, or template, rotation curves in separate luminosity classes, spanning 6 magnitudes in I-band luminosity. The template rotation curves are expressed as functions both of exponential disk scale lengths r_d and of optical radii Ropt, and extend out to 4.5-6.5 r_d, depending on the luminosity bin. The two parameterizations yield slightly different results beyond Ropt because galaxies whose Halpha emission can be traced to larger extents in the disks are typically of higher optical surface brightness and are characterized by larger values of Ropt/r_d. By either parameterization, these template rotation curves show no convincing evidence of velocity decline within the spatial scales over which they are sampled, even in the case of the most luminous systems. In contrast to some previous expectations, the fastest rotators (most luminous galaxies) have, on average, rotation curves that are flat or mildly rising beyond the optical radius, implying that the dark matter halo makes an important contribution to the kinematics also in these systems. The template rotation curves and the derived functional fits provide quantitative constraints for studies of the structure and evolution of disk galaxies, which aim at reproducing the internal kinematics properties of disks at the present cosmological epoch.