Do you want to publish a course? Click here

Self-interacting dark matter constraints in a thick dark disk scenario

96   0   0.0 ( 0 )
 Added by Kyriakos Vattis
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A thick dark matter disk is predicted in cold dark matter simulations as the outcome of the interaction between accreted satellites and the stellar disk in Milky Way sized halos. We study the effects of a self-interacting thick dark disk on the energetic neutrino flux from the Sun. We find that for particle masses between 100 GeV and 1 TeV and dark matter annihilation to heavy leptons either the self-interaction may not be strong enough to solve the small scale structure motivation or a dark disk cannot be present in the Milky Way.



rate research

Read More

Observations show that supermassive black holes (SMBHs) with a mass of $sim10^9 M_odot$ exist when the Universe is just $6%$ of its current age. We propose a scenario where a self-interacting dark matter halo experiences gravothermal instability and its central region collapses into a seed black hole. The presence of baryons in protogalaxies could significantly accelerate the gravothermal evolution of the halo and shorten collapse timescales. The central halo could dissipate its angular momentum remnant via viscosity induced by the self-interactions. The host halo must be on high tails of density fluctuations, implying that high-$z$ SMBHs are expected to be rare in this scenario. We further derive conditions for triggering general relativistic instability of the collapsed region. Our results indicate that self-interacting dark matter can provide a unified explanation for diverse dark matter distributions in galaxies today and the origin of SMBHs at redshifts $zsim6-7$.
We use a semianalytic approach that is calibrated to N-body simulations to study the evolution of self-interacting dark matter cores in galaxies. We demarcate the regime where the temporal evolution of the core density follows a well-defined track set by the initial halo parameters and the cross section. Along this track, the central density reaches a minimum value set by the initial halo density. Further evolution leads to an outward heat transfer, inducing gravothermal core collapse such that the core shrinks as its density increases. We show that the time scale for the core collapse is highly sensitive to the outer radial density profile. Satellite galaxies with significant mass loss due to tidal stripping should have larger central densities and significantly faster core collapse compared to isolated halos. Such a scenario could explain the dense and compact cores of dwarf galaxies in the Local Group like Tucana (isolated from the Milky Way), the classical Milky Way satellite Draco, and some of the ultrafaint satellites. If the ultimate fate of core collapse is black hole formation, then the accelerated time scale provides a new mechanism for creating intermediate mass black holes.
The existence of dark matter particles that carry phenomenologically relevant self-interaction cross sections mediated by light dark sector states is considered to be severely constrained through a combination of experimental and observational data. The conclusion is based on the assumption of specific dark matter production mechanisms such as thermal freeze-out together with an extrapolation of a standard cosmological history beyond the epoch of primordial nucleosynthesis. In this work, we drop these assumptions and examine the scenario from the perspective of the current firm knowledge we have: results from direct and indirect dark matter searches and cosmological and astrophysical observations, without additional assumptions on dark matter genesis or the thermal state of the very early universe. We show that even in the minimal set-up, where dark matter particles self-interact via a kinetically mixed vector mediator, a significant amount of parameter space remains allowed. Interestingly, however, these parameter regions imply a meta-stable, light mediator, which in turn calls for modified search strategies.
79 - Mark R. Lovell 2020
The nature of the dark matter can affect the collapse time of dark matter haloes, and can therefore be imprinted in observables such as the stellar population ages and star formation histories of dwarf galaxies. In this paper we use high resolution hydrodynamical simulations of Local Group-analogue (LG) volumes in cold dark matter (CDM), sterile neutrino warm dark matter (WDM) and self-interacting dark matter (SIDM) models with the EAGLE galaxy formation code to study how galaxy formation times change with dark matter model. We are able to identify the same haloes in different simulations, since they share the same initial density field phases. We find that the stellar mass of galaxies depends systematically on resolution, and can differ by as much as a factor of two in haloes of a given dark matter mass. The evolution of the stellar populations in SIDM is largely identical to that of CDM, but in WDM early star formation is instead suppressed. The time at which LG haloes can begin to form stars through atomic cooling is delayed by $sim$200~Myr in WDM models compared to CDM. It will be necessary to measure stellar ages of old populations to a precision of better than 100~Myr, and to address degeneracies with the redshift of reionization -- and potentially other baryonic processes -- in order to use these observables to distinguish between dark matter models.
We perform a series of controlled N-body simulations to study realizations of the recently discovered Antlia 2 galaxy in cold dark matter (CDM) and self-interacting dark matter (SIDM) scenarios. Our simulations contain six benchmark models, where we vary the initial halo concentration and the self-scattering cross section. We adopt well-motivated initial stellar and halo masses, and our fiducial orbit has a small pericenter. After evolving in the Milky Ways tidal field, the simulated galaxies experience significant mass loss and their stellar distributions expand accordingly. These tidal effects are more prominent if the initial halo concentration is lower and if the self-scattering cross section is larger. Our results show that Antlia 2-like galaxies could be realized in CDM if the halo concentration is low and the stellar distribution is diffuse at the infall time, while these conditions could be relaxed in SIDM. We also find all the simulated galaxies predict approximately the same stellar velocity dispersion after imposing selection criteria for stellar particles. This has important implications for testing dark matter models using tidally disturbed systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا