Do you want to publish a course? Click here

Invariant Gibbs measure for a Schrodinger equation with exponential nonlinearity

136   0   0.0 ( 0 )
 Added by Tristan Robert
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We investigate the invariance of the Gibbs measure for the fractional Schrodinger equation of exponential type (expNLS) $ipartial_t u + (-Delta)^{frac{alpha}2} u = 2gammabeta e^{beta|u|^2}u$ on $d$-dimensional compact Riemannian manifolds $mathcal{M}$, for a dispersion parameter $alpha>d$, some coupling constant $beta>0$, and $gamma eq 0$. (i) We first study the construction of the Gibbs measure for (expNLS). We prove that in the defocusing case $gamma>0$, the measure is well-defined in the whole regime $alpha>d$ and $beta>0$ (Theorem 1.1 (i)), while in the focusing case $gamma<0$ its partition function is always infinite for any $alpha>d$ and $beta>0$, even with a mass cut-off of arbitrary small size (Theorem 1.1 (ii)). (ii) We then study the dynamics (expNLS) with random initial data of low regularity. We first use a compactness argument to prove weak invariance of the Gibbs measure in the whole regime $alpha>d$ and $0<beta < beta^star_alpha$ for some natural parameter $0<beta^star_alphasim (alpha-d)$ (Theorem 1.3 (i)). In the large dispersion regime $alpha>2d$, we can improve this result by constructing a local deterministic flow for (expNLS) for any $beta>0$. Using the Gibbs measure, we prove that solutions are almost surely global for $0<beta llbeta^star_alpha$, and that the Gibbs measure is invariant (Theorem 1.3 (ii)). (iii) Finally, in the particular case $d=1$ and $mathcal{M}=mathbb{T}$, we are able to exploit some probabilistic multilinear smoothing effects to build a probabilistic flow for (expNLS) for $1+frac{sqrt{2}}2<alpha leq 2$, locally for arbitrary $beta>0$ and globally for $0<beta ll beta^star_alpha$ (Theorem 1.5).



rate research

Read More

This paper deals with the 2-D Schrodinger equation with time-oscillating exponential nonlinearity $ipartial_t u+Delta u= theta(omega t)big(e^{4pi|u|^2}-1big)$, where $theta$ is a periodic $C^1$-function. We prove that for a class of initial data $u_0 in H^1(mathbb{R}^2)$, the solution $u_{omega}$ converges, as $|omega|$ tends to infinity to the solution $U$ of the limiting equation $ipartial_t U+Delta U= I(theta)big(e^{4pi|U|^2}-1big)$ with the same initial data, where $I(theta)$ is the average of $theta$.
In this note, we study the hyperbolic stochastic damped sine-Gordon equation (SdSG), with a parameter $beta^2 > 0$, and its associated Gibbs dynamics on the two-dimensional torus. After introducing a suitable renormalization, we first construct the Gibbs measure in the range $0<beta^2<4pi$ via the variational approach due to Barashkov-Gubinelli (2018). We then prove almost sure global well-posedness and invariance of the Gibbs measure under the hyperbolic SdSG dynamics in the range $0<beta^2<2pi$. Our construction of the Gibbs measure also yields almost sure global well-posedness and invariance of the Gibbs measure for the parabolic sine-Gordon model in the range $0<beta^2<4pi$.
We continue the study on the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrodinger equation. By considering the renormalized equation, we extend the quasi-invariance results in [30, 27] to Sobolev spaces of negative regularity. Our proof combines the approach introduced by Planchon, Tzvetkov, and Visciglia [35] with the normal form approach in [30, 27].
We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures.
In this paper we consider the initial value {problem $partial_{t} u- Delta u=f(u),$ $u(0)=u_0in exp,L^p(mathbb{R}^N),$} where $p>1$ and $f : mathbb{R}tomathbb{R}$ having an exponential growth at infinity with $f(0)=0.$ Under smallness condition on the initial data and for nonlinearity $f$ {such that $|f(u)|sim mbox{e}^{|u|^q}$ as $|u|to infty$,} $|f(u)|sim |u|^{m}$ as $uto 0,$ $0<qleq pleq,m,;{N(m-1)over 2}geq p>1$, we show that the solution is global. Moreover, we obtain decay estimates in Lebesgue spaces for large time which depend on $m.$
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا