Do you want to publish a course? Click here

Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrodinger equation in negative Sobolev spaces

63   0   0.0 ( 0 )
 Added by Tadahiro Oh
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We continue the study on the transport properties of the Gaussian measures on Sobolev spaces under the dynamics of the cubic fourth order nonlinear Schrodinger equation. By considering the renormalized equation, we extend the quasi-invariance results in [30, 27] to Sobolev spaces of negative regularity. Our proof combines the approach introduced by Planchon, Tzvetkov, and Visciglia [35] with the normal form approach in [30, 27].



rate research

Read More

We study the wellposedness of Cauchy problem for the fourth order nonlinear Schrodinger equations ipartial_t u=-epsDelta u+Delta^2 u+P((partial_x^alpha u)_{abs{alpha}ls 2}, (partial_x^alpha bar{u})_{abs{alpha}ls 2}),quad tin Real, xinReal^n, where $epsin{-1,0,1}$, $ngs 2$ denotes the spatial dimension and $P(cdot)$ is a polynomial excluding constant and linear terms.
In this paper, we address the long time behaviour of solutions of the stochastic Schrodinger equation in $mathbb{R}^d$. We prove the existence of an invariant measure and establish asymptotic compactness of solutions, implying in particular the existence of an ergodic measure.
135 - Tristan Robert 2021
We investigate the invariance of the Gibbs measure for the fractional Schrodinger equation of exponential type (expNLS) $ipartial_t u + (-Delta)^{frac{alpha}2} u = 2gammabeta e^{beta|u|^2}u$ on $d$-dimensional compact Riemannian manifolds $mathcal{M}$, for a dispersion parameter $alpha>d$, some coupling constant $beta>0$, and $gamma eq 0$. (i) We first study the construction of the Gibbs measure for (expNLS). We prove that in the defocusing case $gamma>0$, the measure is well-defined in the whole regime $alpha>d$ and $beta>0$ (Theorem 1.1 (i)), while in the focusing case $gamma<0$ its partition function is always infinite for any $alpha>d$ and $beta>0$, even with a mass cut-off of arbitrary small size (Theorem 1.1 (ii)). (ii) We then study the dynamics (expNLS) with random initial data of low regularity. We first use a compactness argument to prove weak invariance of the Gibbs measure in the whole regime $alpha>d$ and $0<beta < beta^star_alpha$ for some natural parameter $0<beta^star_alphasim (alpha-d)$ (Theorem 1.3 (i)). In the large dispersion regime $alpha>2d$, we can improve this result by constructing a local deterministic flow for (expNLS) for any $beta>0$. Using the Gibbs measure, we prove that solutions are almost surely global for $0<beta llbeta^star_alpha$, and that the Gibbs measure is invariant (Theorem 1.3 (ii)). (iii) Finally, in the particular case $d=1$ and $mathcal{M}=mathbb{T}$, we are able to exploit some probabilistic multilinear smoothing effects to build a probabilistic flow for (expNLS) for $1+frac{sqrt{2}}2<alpha leq 2$, locally for arbitrary $beta>0$ and globally for $0<beta ll beta^star_alpha$ (Theorem 1.5).
80 - Tadahiro Oh , Yuzhao Wang 2018
In this paper, we study the one-dimensional cubic nonlinear Schrodinger equation (NLS) on the circle. In particular, we develop a normal form approach to study NLS in almost critical Fourier-Lebesgue spaces. By applying an infinite iteration of normal form reductions introduced by the first author with Z. Guo and S. Kwon (2013), we derive a normal form equation which is equivalent to the renormalized cubic NLS for regular solutions. For rough functions, the normal form equation behaves better than the renormalized cubic NLS, thus providing a further renormalization of the cubic NLS. We then prove that this normal form equation is unconditionally globally well-posed in the Fourier-Lebesgue spaces $mathcal{F} L^p(mathbb{T})$, $1 leq p < infty$. By inverting the transformation, we conclude global well-posedness of the renormalized cubic NLS in almost critical Fourier-Lebesgue spaces in a suitable sense. This approach also allows us to prove unconditional uniqueness of the (renormalized) cubic NLS in $mathcal{F} L^p(mathbb{T})$ for $1leq p leq frac32$.
We study the fourth order Schrodinger equation with mixed dispersion on an $N$-dimensional Cartan-Hadamard manifold. At first, we focus on the case of the hyperbolic space. Using the fact that there exists a Fourier transform on this space, we prove the existence of a global solution to our equation as well as scattering for small initial data. Next, we obtain weighted Strichartz estimates for radial solutions on a large class of rotationally symmetric manifolds by adapting the method of Banica and Duyckaerts (Dyn. Partial Differ. Equ., 07). Finally, we give a blow-up result for a rotationally symmetric manifold relying on a localized virial argument.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا