No Arabic abstract
We consider a stochastic partial differential equation with logarithmic (or negative power) nonlinearity, with one reflection at 0 and with a constraint of conservation of the space average. The equation, driven by the derivative in space of a space-time white noise, contains a bi-Laplacian in the drift. The lack of the maximum principle for the bi-Laplacian generates difficulties for the classical penalization method, which uses a crucial monotonicity property. Being inspired by the works of Debussche and Zambotti, we use a method based on infinite dimensional equations, approximation by regular equations and convergence of the approximated semi-group. We obtain existence and uniqueness of solution for nonnegative intial conditions, results on the invariant measures, and on the reflection measures.
We consider a Cahn-Hilliard equation which is the conserved gradient flow of a nonlocal total free energy functional. This functional is characterized by a Helmholtz free energy density, which can be of logarithmic type. Moreover, the spatial interactions between the different phases are modeled by a singular kernel. As a consequence, the chemical potential $mu$ contains an integral operator acting on the concentration difference $c$, instead of the usual Laplace operator. We analyze the equation on a bounded domain subject to no-flux boundary condition for $mu$ and by assuming constant mobility. We first establish the existence and uniqueness of a weak solution and some regularity properties. These results allow us to define a dissipative dynamical system on a suitable phase-space and we prove that such a system has a (connected) global attractor. Finally, we show that a Neumann-like boundary condition can be recovered for $c$, provided that it is supposed to be regular enough.
We consider a relaxation of the viscous Cahn-Hilliard equation induced by the second-order inertial term~$u_{tt}$. The equation also contains a semilinear term $f(u)$ of singular type. Namely, the function $f$ is defined only on a bounded interval of ${mathbb R}$ corresponding to the physically admissible values of the unknown $u$, and diverges as $u$ approaches the extrema of that interval. In view of its interaction with the inertial term $u_{tt}$, the term $f(u)$ is difficult to be treated mathematically. Based on an approach originally devised for the strongly damped wave equation, we propose a suitable concept of weak solution based on duality methods and prove an existence result.
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2times H^1$, working with the weak topology. Also, the existence of global pathwise solution is investigated using the stochastic compactness argument.
We consider a system of stochastic Allen-Cahn equations on a finite network represented by a finite graph. On each edge in the graph a multiplicative Gaussian noise driven stochastic Allen-Cahn equation is given with possibly different potential barrier heights supplemented by a continuity condition and a Kirchhoff-type law in the vertices. Using the semigroup approach for stochastic evolution equations in Banach spaces we obtain existence and uniqueness of solutions with sample paths in the space of continuous functions on the graph. We also prove more precise space-time regularity of the solution.
We study a Cahn-Hilliard-Hele-Shaw (or Cahn-Hilliard-Darcy) system for an incompressible mixture of two fluids. The relative concentration difference $varphi$ is governed by a convective nonlocal Cahn-Hilliard equation with degenerate mobility and logarithmic potential. The volume averaged fluid velocity $mathbf{u}$ obeys a Darcys law depending on the so-called Korteweg force $mu abla varphi$, where $mu$ is the nonlocal chemical potential. In addition, the kinematic viscosity $eta$ may depend on $varphi$. We establish first the existence of a global weak solution which satisfies the energy identity. Then we prove the existence of a strong solution. Further regularity results on the pressure and on $mathbf{u}$ are also obtained. Weak-strong uniqueness is demonstrated in the two dimensional case. In the three-dimensional case, uniqueness of weak solutions holds if $eta$ is constant. Otherwise, weak-strong uniqueness is shown by assuming that the pressure of the strong solution is $alpha$-H{o}lder continuous in space for $alphain (1/5,1)$.