Do you want to publish a course? Click here

The Evolution of Rumors on a Closed Platform during COVID-19

69   0   0.0 ( 0 )
 Added by Andrea Wang
 Publication date 2021
and research's language is English
 Authors Andrea W Wang




Ask ChatGPT about the research

In this work we looked into a dataset of 114 thousands of suspicious messages collected from the most popular closed messaging platform in Taiwan between January and July, 2020. We proposed an hybrid algorithm that could efficiently cluster a large number of text messages according their topics and narratives. That is, we obtained groups of messages that are within a limited content alterations within each other. By employing the algorithm to the dataset, we were able to look at the content alterations and the temporal dynamics of each particular rumor over time. With qualitative case studies of three COVID-19 related rumors, we have found that key authoritative figures were often misquoted in false information. It was an effective measure to increase the popularity of one false information. In addition, fact-check was not effective in stopping misinformation from getting attention. In fact, the popularity of one false information was often more influenced by major societal events and effective content alterations.



rate research

Read More

Background: The COVID-19 pandemic has uncovered the potential of digital misinformation in shaping the health of nations. The deluge of unverified information that spreads faster than the epidemic itself is an unprecedented phenomenon that has put millions of lives in danger. Mitigating this Infodemic requires strong health messaging systems that are engaging, vernacular, scalable, effective and continuously learn the new patterns of misinformation. Objective: We created WashKaro, a multi-pronged intervention for mitigating misinformation through conversational AI, machine translation and natural language processing. WashKaro provides the right information matched against WHO guidelines through AI, and delivers it in the right format in local languages. Methods: We theorize (i) an NLP based AI engine that could continuously incorporate user feedback to improve relevance of information, (ii) bite sized audio in the local language to improve penetrance in a country with skewed gender literacy ratios, and (iii) conversational but interactive AI engagement with users towards an increased health awareness in the community. Results: A total of 5026 people who downloaded the app during the study window, among those 1545 were active users. Our study shows that 3.4 times more females engaged with the App in Hindi as compared to males, the relevance of AI-filtered news content doubled within 45 days of continuous machine learning, and the prudence of integrated AI chatbot Satya increased thus proving the usefulness of an mHealth platform to mitigate health misinformation. Conclusion: We conclude that a multi-pronged machine learning application delivering vernacular bite-sized audios and conversational AI is an effective approach to mitigate health misinformation.
An infodemic is an emerging phenomenon caused by an overabundance of information online. This proliferation of information makes it difficult for the public to distinguish trustworthy news and credible information from untrustworthy sites and non-credible sources. The perils of an infodemic debuted with the outbreak of the COVID-19 pandemic and bots (i.e., automated accounts controlled by a set of algorithms) that are suspected of spreading the infodemic. Although previous research has revealed that bots played a central role in spreading misinformation during major political events, how bots behaved during the infodemic is unclear. In this paper, we examined the roles of bots in the case of the COVID-19 infodemic and the diffusion of non-credible information such as 5G and Bill Gates conspiracy theories and content related to Trump and WHO by analyzing retweet networks and retweeted items. We show the segregated topology of their retweet networks, which indicates that right-wing self-media accounts and conspiracy theorists may lead to this opinion cleavage, while malicious bots might favor amplification of the diffusion of non-credible information. Although the basic influence of information diffusion could be larger in human users than bots, the effects of bots are non-negligible under an infodemic situation.
We investigate predictors of anti-Asian hate among Twitter users throughout COVID-19. With the rise of xenophobia and polarization that has accompanied widespread social media usage in many nations, online hate has become a major social issue, attracting many researchers. Here, we apply natural language processing techniques to characterize social media users who began to post anti-Asian hate messages during COVID-19. We compare two user groups -- those who posted anti-Asian slurs and those who did not -- with respect to a rich set of features measured with data prior to COVID-19 and show that it is possible to predict who later publicly posted anti-Asian slurs. Our analysis of predictive features underlines the potential impact of news media and information sources that report on online hate and calls for further investigation into the role of polarized communication networks and news media.
From global pandemics to geopolitical turmoil, leaders in logistics, product allocation, procurement and operations are facing increasing difficulty with safeguarding their organizations against supply chain vulnerabilities. It is recommended to opt for forecasting against trending based benchmark because auditing a future forecast puts more focus on seasonality. The forecasting models provide with end-to-end, real time oversight of the entire supply chain, while utilizing predictive analytics and artificial intelligence to identify potential disruptions before they occur. By combining internal and external data points, coming up with an AI-enabled modelling engine can greatly reduce risk by helping retail companies proactively respond to supply and demand variability. This research paper puts focus on creating an ingenious way to tackle the impact of COVID19 on Supply chain, product allocation, trending and seasonality. Key words: Supply chain, covid-19, forecasting, coronavirus, manufacturing, seasonality, trending, retail.
Physical and mental well-being during the COVID-19 pandemic is typically assessed via surveys, which might make it difficult to conduct longitudinal studies and might lead to data suffering from recall bias. Ecological momentary assessment (EMA) driven smartphone apps can help alleviate such issues, allowing for in situ recordings. Implementing such an app is not trivial, necessitates strict regulatory and legal requirements, and requires short development cycles to appropriately react to abrupt changes in the pandemic. Based on an existing app framework, we developed Corona Health, an app that serves as a platform for deploying questionnaire-based studies in combination with recordings of mobile sensors. In this paper, we present the technical details of Corona Health and provide first insights into the collected data. Through collaborative efforts from experts from public health, medicine, psychology, and computer science, we released Corona Health publicly on Google Play and the Apple App Store (in July, 2020) in 8 languages and attracted 7,290 installations so far. Currently, five studies related to physical and mental well-being are deployed and 17,241 questionnaires have been filled out. Corona Health proves to be a viable tool for conducting research related to the COVID-19 pandemic and can serve as a blueprint for future EMA-based studies. The data we collected will substantially improve our knowledge on mental and physical health states, traits and trajectories as well as its risk and protective factors over the course of the COVID-19 pandemic and its diverse prevention measures.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا